Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.3.180

A Study on the Catalytic Ortho-Para Hydrogen Conversion in the Cryogenic Heat Exchanger Filled with Catalysts for Hydrogen Liquefaction  

SOHN, SANGHO (Department of Thermal Systems, Korea Institute of Machinery and Materials)
YOON, SEOK HO (Department of Thermal Systems, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.3, 2021 , pp. 180-188 More about this Journal
Abstract
This paper conducted a study on the ortho-para hydrogen conversion in the cryogenic heat exchanger filled with catalysts for hydrogen liquefaction by utilizing the numerical model of plate-fin heat exchanger considering catalytic reaction of ortho-para hydrogen conversion, heat and mass transfer phenomena and fluid dynamics in a porous medium. Various numerical analyzes were performed to investigate the characteristics of ortho-para hydrogen conversion, the effects of space velocity and activated catalyst performance.
Keywords
Plate-fin heat exchanger; Ortho-para hydrogen conversion; Hydrogen liquefaction; Catalytic reaction; Space velocity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydro liquefaction processes", Int. J. Hydrogen Energy, Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.   DOI
2 J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, pp. 721-748, doi: https://doi.org/10.1063/1.3160306.   DOI
3 M. Lipman, H. Cheung, and O. P. Roberts, "Continuous conversion hydrogen liquefaction", Chem. Eng. Prog., Vol. 59, 1963, pp. 49-54.
4 P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic orthopara hydrogen conversion during liquefaction", Chem. Eng. Technol., Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.   DOI
5 Y. Liang and J. Yonglin, "Review on the design and optimization of hydrogen liquefaction processes", Front. Energy, Vol. 14, 2020, pp. 530-544, doi: https://doi.org/10.1007/s11708-019-0657-4.   DOI
6 J. Park, H. Lim, G. H. Rhee, and S. W. Karng, "Catalyst filled heat exchanger for hydrogen liquefaction", Int. J. Heat and Mass Transfer, Vol. 170, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121007.   DOI
7 ANSYS, "Fluent theory manual", 2013.
8 H. L. Hutchinson, L. F. Brown, and P. L. Barrick, "A comparison of rate expressions for the low-temperature para-orthohydrogen shift", Advances in Cryogenic Eng., Vol. 16, 1970, pp. 96-103, doi: https://doi.org/10.1007/978-1-4757-0244-6_12.   DOI
9 H. L. Hutchinson, P. L. Barrick, and L. F. Brown, "Experimental study of reaction kinetics for para-orthohydrogen at 20° to 80°K", Advances in Cryogenic Eng., Vol. 10, 1965, pp. 190-196, doi: https://doi.org/10.1007/978-1-4684-3108-7_21.   DOI
10 T. Kim, B. I. Choi, Y. S. Han, and K. H Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.   DOI