Browse > Article

Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440  

Lee, Yun-Ho (Division of Environmental Science and Ecological Engineering, Korea University)
Yeom, Jin-Ki (Division of Environmental Science and Ecological Engineering, Korea University)
Kang, Yoon-Suk (Division of Environmental Science and Ecological Engineering, Korea University)
Kim, Ju-Hyun (Division of Environmental Science and Ecological Engineering, Korea University)
Sung, Jung-Suk (Department of Life Science, Dongguk University)
Jeon, Che-Ok (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University)
Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1504-1512 More about this Journal
Abstract
The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.
Keywords
Oxidative stress; ferredoxin; osmotic stress; aconitase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cho, Y. H., E. J. Lee, and J. H. Roe. 2000. A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol. Microbiol. 35: 150-160   DOI   ScienceOn
2 Griffith, K. L. and R. E. Wolf. 2001. Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: Identifying nucleotides required for DNA binding and transcription activation. Mol. Microbiol. 40: 1141-1154   DOI   ScienceOn
3 Krapp, A. R., T. B. Tognetti, N. Carrillo, and A. Acevedo. 1997. The role of ferredoxin-NADP+ reductase in the concerted cell defense against oxidative damage - studies using Escherichia coli mutants and cloned plant genes. Eur. J. Biochem. 249: 556-563   DOI   ScienceOn
4 Lee, Y., S. Pena-Llopis, Y. S. Kang, H. D. Shin, B. Demple, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Expression analysis of the fpr (ferredoxin-$NADP^+$ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Commun. 339: 1246-1254   DOI   ScienceOn
5 Li, Z. and B. Demple. 1996. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol. Microbiol. 20: 937-945   DOI   ScienceOn
6 Pane-Farre, J., B. Jonas, K. Forstner, S. Engelmann, and M. Hecker. 2006. The $\sigma$B regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296: 237-258   DOI   ScienceOn
7 Yu, T. S. 2005. Purification and characterization of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. J. Microbiol. Biotechnol. 15: 573-578   과학기술학회마을
8 Philippe, N., J. P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246-255   DOI   ScienceOn
9 Hoffmann, T., A. Schutz, M. Brosius, A. Volker, U. Volker, and E. Bremer. 2002. High-salinity-induced iron limitation in Bacillus subtilis. J. Bacteriol. 184: 718-727   DOI   ScienceOn
10 Fischer, F., D. Raimondi, A. Aliverti, and G. Zanetti. 2002. Mycobacterium tuberculosis FprA, a novel bacterial NADPHferredoxin reductase. Eur. J. Biochem. 269: 3005-3013   DOI   ScienceOn
11 Cheung, K. J., V. Badarinarayana, D. W. Selinger, D. Janes, and G. A. Church. 2003. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res. 13: 206-215   DOI   ScienceOn
12 Abranches, J., J. A. Lemos, and B. A. Burne. 2006. Osmotic stress responses of Streptococcus mutas UA159. FEMS Microbiol. Lett. 255: 240-246   DOI   ScienceOn
13 Giro, M., N. Carrillo, and A. R. Krapp. 2006. Glucose-6- phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 152: 1119-1128   DOI   ScienceOn
14 Jeong, E., K. Park, S. Y. Yi, H. Kang, S. J. Chung, C. Lee, J. W. Chung, D. Seol, B. H. Chung, and M. Kim. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643   과학기술학회마을
15 Yin, S., M. Fuangthong, W. P. Laratta, and J. P. Shapleigh. 2003. Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl. Environ. Microbiol. 69: 3938-3944   DOI   ScienceOn
16 Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
17 Imlay, J. A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395-418   DOI   ScienceOn
18 Wackett, L. P. 2003. Pseudomonas putida - a versatile biocatalyst. Nature Biotechnol. 21: 136-138   DOI   ScienceOn
19 Oka, A., H. Sugisaki, and M. Takanami. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217-226   DOI
20 Bittel, C., L. C. Tabares, M. Armesto, N. Carrillo, and N. Cortez. 2003. The oxidant-responsive diaphorease of Rhodobacter capsulatus in a ferredoxin (flavodoxin)-NADP(H) reductase. FEBS Lett. 553: 408-412   DOI   ScienceOn
21 Bremer, E. and R. Krämer. 2000. Coping with osmotic challenges: Osmoregulation through accumulation and release of compatible solutes in bacteria, pp. 79-97. In G. Storz and R. Hengge-Aronis (eds.), Bacterial Stress Responses. ASM Press, Washington DC
22 Hopper, D., J. Bernhardt, and M. Hecker. 2006. Salt stress adaptation of Bacillus subtilis: A physiological proteomics approach. Proteomics 6: 1550-1562   DOI   ScienceOn
23 Smirnova, G. V., N. G. Muzyka, and O. N. Oktyabrsky. 2000. The role of antioxidant enzymes in response of Escherichia coli to osmotic upshift. FEMS Microbiol. Lett. 186: 209-213   DOI   ScienceOn
24 Kalogeraki, V. S. and S. C. Winans. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188: 69-75   DOI   ScienceOn
25 Park, W., S. Pena-Llopis, Y. Lee, and B. Demple. 2006. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem. Biophys. Res. Commun. 341: 51-56   DOI   ScienceOn
26 Carrillo, N. and E. A. Ceccarelli. 2003. Open questions in ferredoxin-$NADP^+$ reductase catalytic mechanism. Eur. J. Biochem. 270: 1900-1915   DOI   ScienceOn
27 Djaman, O., F. W. Outten, and J. A. Imlay. 2004. Repair of oxidized iron-sulfur cluster in Escherichia coli. J. Biol. Chem. 279: 44590-44599   DOI   ScienceOn
28 Seo, D. and H. Sakurai. 2002. Purification and characterization of ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum. Biochim. Biophys. Acta 1597: 123-132   DOI   ScienceOn
29 Kang, Y.-S., Y. J. Kim, C. O. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825   과학기술학회마을
30 Ceccarelli, E. A., A. K. Arakaki, N. Cortez, and N. Carrillo. 2004. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductase. Biochim. Biophys. Acta 1698: 155-165   DOI   ScienceOn
31 Greenberg, J., P. Monach, J. Chou, D. Josepphy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 6181- 6185
32 Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390   과학기술학회마을