• Title/Summary/Keyword: Catalysts

Search Result 2,495, Processing Time 0.022 seconds

Feasibility Study on Technology Status Level and Location Conditions of Urban Mining Industry in Abandoned Mine Area (도시광산 산업의 현황수준 및 폐광지역 입지여건 타당성 연구)

  • Ko, Ilwon;Park, Joo-Hyun;Park, Jae-Hyun;Yang, In-Jae;Lee, Seung-Ae;Kim, Dae-Yeop;Kim, Su-Ro
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.553-563
    • /
    • 2018
  • In this study, the location conditions and optimal technologies required for creating urban municipalities that can utilize the space in an abandoned mine area, where there is no infrastructure related to recycling wastes and valuable metals, are investigated. The urban mining industry deals with mineral resources through the processing of high value-added industrial by-products and wastes, and it is a useful linkage industry for the development of mineral resources and prevention of mining hazards. Urban mining technologies targeted at the abandoned mine area constitute screening, extraction, and smelting for recycling waste products. By analyzing the technologies available, an industrial network can be developed for recycling waste batteries and catalysts, which are promising raw materials. It is also important to establish an appropriate location for related industries that can generate value-added resources, rather than the resource supply and demand conditions seen in general urban mines. In order to overcome the accessibility and infrastructure limitations, the economic foundation of the abandoned mine area should consider the linkage of raw material supply, key technologies for recycling useful mineral resources that are derived from urban mines, spatial and site conditions, and industrial characteristics.

Synthesis of Colloidal Gold and Application of Skin Care Cosmetics (콜로이달 골드 합성 및 스킨케어 화장품 응용)

  • Kim, Dae-Seop;Jeong, Seung-Hyun;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1325-1334
    • /
    • 2021
  • This study reports the development of a manufacturing method of synthesizing colloidal gold using catalysts available for cosmetics and an anti-aging ampoule with skin improvement effects using it. Nano-colloidal gold was synthesized by using ascorbic acid and sodium borohydride as a reducing catalyst in hydrogen tetrachloroaurate tetrahydrate. It was confirmed that the particles became smaller as the mass of the content of ascorbic acid, which is a catalyst, increased. On the other hand, as the mass of sodium borohydride increased, the particle size tended to increase. In order to control the colloidal gold reaction rate, particles having 100 to 500 nm of a particle diameter distribution could be obtained using xanthan gum and hydroxyethylcellulose. The optimal synthesis conditions could be obtained by reacting for 1 to 4 hours at 18℃, a reduced pressure state of 20 to 75 mmHg, a stirring speed of 10~50 rpm. The synthesized colloidal gold had a unique smell of dark pink, pH = 5.5, specific gravity of 1.0032, and viscosity of 80 to 310 cps. As an application of skin care cosmetics, anti-aging ampoule has been developed, and it is expected to be used for various prescriptions and formulations using it.

Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts (Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal-support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

Improvement of Bleaching Performance of Photosensitive Electrochromic Device by the Additive of TEMPOL (TEMPOL 첨가제 적용에 의한 광감응형 전기변색 소자 탈색성능 향상)

  • Song, Seung Han;Park, Hee sung;Cho, Churl Hee;Hong, Sungjun;Han, Chi-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.209-217
    • /
    • 2022
  • We have developed photosensitive electrochromic smart windows that does not require any transparent conducting oxide (TCO) substrate. In our previous study, we demonstrated that a flexible film-type device made with a low temperature curing WO3 sol and TiO2 sol could show a reversible and rapid switching between colored and bleached state via incorporation of platinum catalysts on the surface of WO3 layer. However, when these devices were exposed to sunlight over 4 hour, it was confirmed that they did not return to fully bleached state in the darkened state due to their overcoloring process. In this study, we added 4-hydroxy-(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPOL) as an additive to the electrolyte of photosensitive electrochromic device to effectively prevent the undesired overcoloring process. The resulting device with TEMPOL indeed did not undergo excessive coloration and showed great reversibility even after being exposed to sunlight for over 4 hours. Various concentrations of TEMPOL were applied to compare changes in the visible transmittance and coloring/bleaching kinetics of devices. In terms of energetic point of view, we proposed a plausible mechanism of TEMPOL to prevent excessive coloration.

Implementation of Patient Experience Assessment and Subsequent Changes at the Ground Level in Health Care: Patient Experience Employees' Perspective (환자경험 평가와 의료 현장의 변화: 의료기관 환자경험 업무 담당자의 관점)

  • Song, Yeong-Chae;Yoon, Eun-Sil;Han, Se-Young;Tae, Ji-Yeon;You, Soo-Kyeong;Do, Young-Kyung
    • Quality Improvement in Health Care
    • /
    • v.28 no.1
    • /
    • pp.14-33
    • /
    • 2022
  • Purpose: To examine whether the Patient Experience Assessment (PEA) has led to perceptible changes at the ground level of health care, as a way of evaluating PEA as a policy intervention for quality improvement. Methods: Four focus group discussions (FGDs) were conducted, each comprising six to eight participants who were employees responsible for patient experience at their respective hospitals. The primary focus of the FGDs was on questions such as: 1) How do hospitals respond to PEA? 2) What significant changes were observed after the implementation of PEA? 3) What were the unintended consequences of implementing PEA, if any? 4) What areas of improvement have been identified for maximizing the potential of PEA? Results: Two broad themes emerged out of the FGDs: changes observed post implementation of PEA, and areas for improvement of PEA. Four significant changes were reported by participants: changes in perception and attitude regarding patient experience in hospital employees, increased active involvement by the hospital leadership, enhanced efforts to improve patient experience, and increased cooperation between such activities. Furthermore, eight areas of improvement were identified, which have been grouped in three categories: improving the process of data collection for PEA, introducing additional catalysts to facilitate further changes, and paying attention to structure- and patient-level constraints that must be addressed in parallel. Conclusion: The implementation of PEA led to perceptible changes within hospitals, which implies that it can serve as an effective catalyst for improving patient experience. A number of areas of improvement that would aid in maximizing the potential of PEA were also identified.

The Impact of COVID-19 on the Labor Market in India: Focusing on the Expansion of the Labor Gap and Digitization (COVID-19가 인도 노동시장에 미친 영향: 노동격차 확대와 디지털화를 중심으로)

  • Kang, Sung Yong;Lee, Myung Moo;Kim, Yun Ho;Nam, Eun Young;Lee, Sang Keon
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • India has recently experienced an acute crisis confronting the COVID-19 pandemic as confirmed cases exceeded 11.73 million in March 2021, which was the second worst scale only after the United States. The strict lockdown measures as well as the pandemic itself posed a serious threat of survival, in particular, to immigrant workers engaged in informal sectors, which triggered their reverse immigration. In case the COVID-19 pandemic continues in 2021, it is estimated that in the sector of tourism and service alone, more than 20 million jobs will disappear. The damage on industry is already being realized with the significant decrease of workforce. It is important to note, however, that jobless growth and labor polarization were observed even before the outbreak of COVID-19, and that the pandemic only served as one of the trigger catalysts that made those submerged problems burst out. In this study, we examine the structural problems in industry and labor market in India and consider the social context and efficacy of the "Make in India" or "Atmanirbhar Bhrat" policy. The latter initiative was presented in the trenches of the pandemic in 2020. While considering the complexity of problems, we would like to pursue a future-oriented approach and propose a direction in restructuring the labor market, attempted at reversing the critical conditions following the fourth industrial revolution and digitization into the shortcut to labor market restructuring.

Synthesis of Size Controllable Amine-Functionalized Silica Nanoparticles Based on Biomimetic Polyamine Complex (생체 모방 폴리아민 복합체 기반의 크기 조절이 가능한 아민 기능화 실리카 나노입자의 합성)

  • Kim, Dong-Yeong;Kim, Jae Seong;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.407-413
    • /
    • 2022
  • This study demonstrates a method for synthesis of amine functionalized and easily size controllable silica nanoparticles through biomimetic polyamine complex. First, we generate a polyamine nanocomplex composed of polyallylamine hydrochloride (PAH) and phosphate ion (pi) to synthesize silica nanoparticles. The size of polyamine nanocomplex is reversibly adjusted within the range of about 50 to 300 nm according to the pH conditions. Amine groups of the PAH in the nanocomplex catalyzes the condensation reaction of silicic acid. As a results, silica nanoparticles are synthesized based on nanocomplex in a very short time. Finally, we synthesize silica nanoparticles with various sizes according to the pH conditions. In the process of synthesizing silica nanoparticles, polyamine chains that act as catalysts are incorporated into the inside and surface of the particles, subsequently, amine groups are exposed on the surface of silica nanoparticles. As a results, the synthesis and surface modification of silica nanoparticles are performed simultaneously, and the silica nanoparticles introduced with amine groups can be easily synthesized by adjusting the sizes of the silica nanoparticles. Finally, we demonstrate the synthesis of functional silica nanoparticles in a short time under milder conditions than the conventional synthetic method. Furthermore, this method can be applicable to bioengineering and materials fields.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.