DOI QR코드

DOI QR Code

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes

석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성

  • Park, Ji Hye (Department of Chemical Engineering Education, Chungnam National University) ;
  • Hong, Min Woo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 화학공학교육과) ;
  • 홍민우 (충남대학교 에너지과학기술대학원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2022.01.21
  • Accepted : 2022.02.21
  • Published : 2022.03.31

Abstract

To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

미활용 저급자원인 석유코크스를 대상으로 고순도의 수소 생산을 위한 수성가스전이반응에 적용가능성을 확인하기 위하여 Cu/ZnO/MgO/Al2O3 (CZMA) 촉매를 공침법을 사용하여 제조하였다. 제조된 촉매는 BET, H2-TPR을 사용하여 분석되었다. 촉매의 반응성 테스트는 고농도의 CO를 포함하는 합성가스로부터 단일 Low Temperature Shift 반응을 거치는 경우와 High Temperature Shift 반응을 거친 후 스팀의 응축 없이 즉시 LTS 반응을 거치는 두 가지의 경우를 비교 및 분석하였다. 두 조건에서 steam/CO 비, 유량 및 유속, 온도에 따른 반응특성을 확인하였다. 전환된 저농도의 CO와 스팀이 응축 없이 LTS로 즉시 주입되는 경우 많은 양의 스팀이 존재함에도 불구하고 대부분의 조건에서 다소 낮은 CO 전환율을 나타냈다. 또한 steam/CO비, 온도 및 유속에 대한 영향이 크게 나타나 최적의 조업조건을 결정하기에 추가적인 분석이 요구되었다. 반면, 고농도의 CO 기체를 포함하는 조건에서는 탄소침적 또는 촉매의 활성 저하가 나타나지 않았으며 대부분의 조건에서 높은 CO 전환율을 나타내었다. 결론적으로 Cu/ZnO/MgO/Al2O3 촉매를 적용하여 고농도의 CO를 포함하는 합성가스 조성에서 적절한 조업조건을 적용시키면 단일 LTS 반응을 적용해도 고농도의 CO를 CO2로 충분히 전환 가능함을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부(국토교통과학기술진흥원)의 석유 코크스 활용 수소생산 실용화 기술개발 사업(21PCHG-C163217-01)의 지원으로 수행되었습니다.

References

  1. Park, N. K., Kim, M. K., Lee, S. J., and Yun, Y. S., "Review of Desulfurization Technologies for Production of Blue Hydrogen by Gasification of Petroleum Cokes," Journal of Energy & Climate Change, 16(2), 171-187 (2021).
  2. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., and Popoola, O. M., "Hydrogen energy, economy and storage: review and recommendation," Int. J. Hydrog. Energy, 44(29), 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  3. Yim, D. W., "Governance Leadership for Hydrogen Economy Revitalization," Trans. of Korean Hydrogen and New Energy Society, 31(3), 265-275 (2020). https://doi.org/10.7316/KHNES.2020.31.3.265
  4. Kim, J. H., Park, D. K., Kim, J. H., Kim, H. J., Kim, H. S., Kang, S. H., and Ryu, J. H., "Trend of CO2 Free H2 Production Technology for Carbon Neutrality," Journal of Energy & Climate Change, 16(2), 103-127 (2021).
  5. Atilhan, S., Park, S., El-Halwagi, M. M., Atilhan, M., Moore, M., and Nielsen, R. B., "Green hydrogen as an alternative fuel for the shipping industry," Curr. Opin. Chem. Eng., 31, 100668 (2020).
  6. Noussan, M., Raimondi, P. P., Scita, R., and Hafner, M., "The role of green and blue hydrogen in the energy transition-a technological and geopolitical perspective," Sustainability, 13(1), 298 (2021). https://doi.org/10.3390/su13010298
  7. Na, H. S., Jeong, D. W., Jang, W. J., Lee, Y. L., and Roh, H. S., "A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas," Trans. of Korean Hydrogen and New Energy Society, 25(3), 227-233 (2014). https://doi.org/10.7316/KHNES.2014.25.3.227
  8. Park, J. H., Im, H. B., Hwang, R. H., Baek, J. H., Koo, K. Y., and YI, K. B., "Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction," Trans. of Korean Hydrogen and New Energy Society, 28(1), 1-8 (2017). https://doi.org/10.7316/KHNES.2017.28.1.1
  9. Park, J. H., Baek, J. H., Hwang, R. H., and Yi, K. B., "Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction," Clean Technol., 23(4), 429-434 (2017). https://doi.org/10.7464/KSCT.2017.23.4.429
  10. Rhodes, C., Hutchings, G. J., and Ward, A. M., "Water-gas shift reaction: finding the mechanistic boundary," Catal. Today, 23(1), 43-58 (1995). https://doi.org/10.1016/0920-5861(94)00135-O
  11. Byun, C. K., Im, H. B., Park, J., Baek, J., Jeong, J., Yoon, W. R., and Yi, K. B., "Enhanced catalytic activity of Cu/Zn catalyst by Ce addition for low temperature water gas shift reaction," Clean Technol., 21(3), 200-206 (2015). https://doi.org/10.7464/KSCT.2015.21.3.200
  12. Stone, F. S., and Waller, D., "Cu-ZnO and Cu-ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts," Top. Catal., 22(3), 305-318 (2003). https://doi.org/10.1023/A:1023592407825
  13. RJ, B. S., Loganathan, M., and Shantha, M. S., "A review of the water gas shift reaction kinetics," Int. J. Chem. React. Eng., 8(1) (2010).
  14. Baek, J. H., Jeong, J. M., Park, J. H., Yi, K. B., and Rhee, Y. W., "Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift Reaction," Trans. of Korean Hydrogen and New Energy Society, 26(5), 423-430 (2015). https://doi.org/10.7316/KHNES.2015.26.5.423
  15. Saito, M., and Murata, K., "Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction," Catal. Surv. Asia, 8(4), 285-294 (2004). https://doi.org/10.1007/s10563-004-9119-y
  16. Gokhale, A. A., Dumesic, J. A., and Mavrikakis, M., "On the mechanism of low-temperature water gas shift reaction on copper," J. Am. Chem. Soc., 130(4), 1402-1414 (2008). https://doi.org/10.1021/ja0768237
  17. Li, Y., Fu, Q., and Flytzani-Stephanopoulos, M., "Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts," Appl. Catal. B, 27(3), 179-191 (2000). https://doi.org/10.1016/S0926-3373(00)00147-8
  18. Shishido, T., Yamamoto, M., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T., and Takehira, K., "Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation," Appl. Catal. A: Gen., 303(1), 62-71 (2006). https://doi.org/10.1016/j.apcata.2006.01.031
  19. Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., and Takehira, K., "Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol," Appl. Catal. A: Gen., 263(2), 249-253 (2004). https://doi.org/10.1016/j.apcata.2003.12.018
  20. Wang, X., Gorte, R. J., and Wagner, J. P., "Deactivation mechanisms for Pd/ceria during the water-gas-shift reaction," J. Catal., 212(2), 225-230 (2002). https://doi.org/10.1006/jcat.2002.3789
  21. Twigg, M. V., and Spencer, M. S., "Deactivation of supported copper metal catalysts for hydrogenation reactions," Appl. Catal. A: Gen., 212(1-2), 161-174 (2001). https://doi.org/10.1016/S0926-860X(00)00854-1
  22. Kumar, P., and Idem, R., "A Comparative Study of Copper-Promoted Water-Gas-Shift (WGS) Catalysts," Energy Fuels, 21(2), 522-529 (2007). https://doi.org/10.1021/ef060389x
  23. Aika, K. I., Takano, T., and Murata, S., "Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis: 3. A magnesia-supported ruthenium catalyst," J. Catal., 136(1), 126-140 (1992). https://doi.org/10.1016/0021-9517(92)90112-U
  24. Lee, S. W., and Ihm, S. K., "Characteristics of magnesium-promoted Pt/ZSM-23 catalyst for the hydroisomerization of n-hexadecane," Ind. Eng. Chem. Res., 52(44), 15359-15365 (2013). https://doi.org/10.1021/ie400628q
  25. Baek, J. I., Yang, S. R., Eom, T. H., Lee, J. B., and Ryu, C. K., "Effect of MgO addition on the physical properties and reactivity of the spray-dried oxygen carriers prepared with a high content of NiO and Al2O3," Fuel, 144, 317-326 (2015). https://doi.org/10.1016/j.fuel.2014.11.035
  26. Nishida, K., Li, D., Zhan, Y., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., "Effective MgO surface doping of Cu/Zn/Al oxides as water-gas shift catalysts," Appl. Clay Sci., 44(3-4), 211-217 (2009). https://doi.org/10.1016/j.clay.2009.02.005
  27. Shishido, T., Yamamoto, M., Atake, I., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T., and Takehira, K., "Cu/Zn-based catalysts improved by adding magnesium for water-gas shift reaction," J. Mol. Catal. A Chem., 253(1-2), 270-278 (2006). https://doi.org/10.1016/j.molcata.2006.03.049
  28. Park, J. H., Baek, J. H., Jo, G. H., Rasheed, H. U., and Yi, K. B., "Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction," Trans. of Korean Hydrogen and New Energy Society, 30(2), 95-102 (2019). https://doi.org/10.7316/KHNES.2019.30.2.95
  29. Sing, K. S., "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure Appl. Chem., 57(4), 603-619 (1985). https://doi.org/10.1351/pac198557040603
  30. Zhang, L., Wang, X., Millet, J. M. M., Matter, P. H., and Ozkan, U. S., "Investigation of highly active Fe-Al-Cu catalysts for water-gas shift reaction," Appl. Catal. A: Gen., 351(1), 1-8 (2008). https://doi.org/10.1016/j.apcata.2008.08.019
  31. Lindstrom, B., Pettersson, L. J., and Menon, P. G., "Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles," Appl. Catal. A: Gen., 234(1-2), 111-125 (2002). https://doi.org/10.1016/S0926-860X(02)00202-8
  32. Lima, A. A. G., Nele, M., Moreno, E. L., and Andrade, H. M. C., "Composition effects on the activity of Cu-ZnO-Al2O3 based catalysts for the water gas shift reaction: A statistical approach," Appl. Catal. A: Gen., 171(1), 31-43 (1998). https://doi.org/10.1016/S0926-860X(98)00072-6
  33. Figueiredo, R. T., Andrade, H. M. C., and Fierro, J. L., "Influence of the preparation methods and redox properties of Cu/ZnO/Al2O3 catalysts for the water gas shift reaction," J. Mol. Catal. Chem., 318(1-2), 15-20 (2010). https://doi.org/10.1016/j.molcata.2009.10.028