• 제목/요약/키워드: Caspase-3 inhibitors

검색결과 91건 처리시간 0.035초

콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구 (Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L.)

  • 채양희;신동역;박철;이용태;문성기;최영현
    • 한국식품영양과학회지
    • /
    • 제40권5호
    • /
    • pp.649-659
    • /
    • 2011
  • 연구에서는 콩다닥냉이 추출물의 항암활성을 조사하기 위하여 잎 및 뿌리의 열수 추출물(WELVL 및 WELVR)이 HCT116 대장암세포의 증식 억제와 연관된 apoptosis 유도 기전에 관한 연구를 시도하였다. 본 연구의 결과에 의하면 HCT116 세포에 WELVL 및 WELVR을 처리하였을 경우에 유발되는 증식 억제 및 형태 변화는 apoptosis 유발과 밀접한 연관이 있었으며, 증식억제 및 apoptosis 유도 효과는 WELVL에 비하여 WELVR에서 높게 나타났다. 특히 WELVR에 의한 apoptosis 유발에는 FasL의 발현 증가를 통한 caspase-8의 활성화와 이로 인한 Bid 단백질의 단편화와 함께 Bcl-2 family의 발현 변화를 통한 mitochondria의 기능 이상과 이로 인한 caspase-9 및 -3의 활성화, 그리고 기질단백질들의 분해가 중요한 역할을 하는 것으로 나타났다. 또한 IAP family의 발현 감소로 인한 caspase의 활성 증가도 어느 정도 관여하는 것으로 생각되어진다. 따라서 WELVR 처리에 의하여 유발되는 apoptosis는 extrinsic pathway 및 intrinsic pathway를 모두 경유하는 multiple apoptotic pathway에 의하여 조절되는 것으로 생각되며, 이러한 결과들은 인체 암세포에서 콩다닥냉이의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 콩다닥냉이 추출물을 포함한 그와 유사한 항암제 후보물질들의 연구 기초자료로서 사용될 수 있을 것으로 생각된다.

Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

  • Yoon, Jaemin;Ham, Hyeonmi;Sung, Jeehye;Kim, Younghwa;Choi, Youngmin;Lee, Jeom-Sig;Jeong, Heon-Sang;Lee, Junsoo;Kim, Daeil
    • Nutrition Research and Practice
    • /
    • 제8권2호
    • /
    • pp.125-131
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS: Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS: TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS: These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress.

Apoptosis of Human Bladder Cancer Cells by an Ethanolic Extract of Scutellaria Baicalensis GEORGI Via Caspase and MAPK Signaling Pathways

  • Gim, Huijin;Shim, Ji Hwan;Lee, Soojin;Park, Hyun Soo;Kim, Byung Joo
    • 동의생리병리학회지
    • /
    • 제30권2호
    • /
    • pp.131-136
    • /
    • 2016
  • An ethanolic extracts of Scutellaria Baicalensis GEORGI are used to treat cancer, infectious diseases, and inflammation. In the present study, we investigated the effects of an ESBG on the growth and survival of 5637 cells, a human bladder carcinoma cell line. Cells were treated with different concentrations of an ethanolic extract of Scutellaria Baicalensis GEORGI (ESBG), and cell death was assessed using a MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. Analyses of the sub G1 peak, caspase-3 and -9 activities, and mitochondrial membrane depolarizations were conducted to confirm cell death by apoptosis. ESBG had a cytotoxic effect on 5637 cells, and increased the sub G1 peak, caspase-3 and -9 activities, and mitochondrial depolarization, indicating ESBG induced apoptosis. Furthermore, MAPK (mitogen-activated protein kinases) inhibitors suppressed this apoptosis. In an in vitro study, a combination of sub-optimal doses of ESBG and paclitaxel, 5-fluorouracil, or docetaxel noticeably suppressed tumor growth by 5637 cells. Our findings provide insight of the mechanisms underlying cellular apoptosis induced by ESBG, and suggest new therapeutic strategies for bladder cancer.

Curdione Inhibits Proliferation of MCF-7 Cells by Inducing Apoptosis

  • Li, Juan;Bian, Wei-He;Wan, Juan;Zhou, Jing;Lin, Yan;Wang, Ji-Rong;Wang, Zhao-Xia;Shen, Qun;Wang, Ke-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9997-10001
    • /
    • 2014
  • Background: Curdione, one of the major components of Curcuma zedoaria, has been reported to possess various biological activities. It thus might be a candidate anti-flammatory and cancer chemopreventive agent. However, the precise molecular mechanisms of action of curdione on cancer cells are still unclear. In this study, we investigated the effect of curdione on breast cancer. Materials and Methods: Xenograft nude mice were used to detect the effect of curdione on breast cancer in vivo; we also tested the effect of curdione on breast cancer in vitro by MTT, Flow cytometry, JC-I assay, and western blot. Results: Firstly, we found that curdione significantly suppressed tumor growth in a xenograft nude mouse breast tumor model in a dose-dependent manner. In addition, curdione treatment inhibited cell proliferation and induced cell apoptosis. Moreover, after curdione treatment, increase of impaired mitochondrial membrane potential occurred in a concentration dependent manner. Furthermore, the expression of apoptosis-related proteins including cleaved caspase-3, caspase-9 and Bax was increased in curdione treatment groups, while the expression of the anti-apoptotic Bcl-2 was decreased. Inhibitors of caspase-3 were used to confirm that curdione induced apoptosis. Conclusions: Overall, our observations first suggested that curdione inhibited the proliferation of breast cancer cells by inducing apoptosis. These results might provide some molecular basis for the anti-cancer activity of curdione.

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells

  • Lee, Phil Young;Park, Byoung Chul;Chi, Seung Wook;Bae, Kwang-Hee;Kim, Sunhong;Cho, Sayeon;Kang, Seongman;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.560-565
    • /
    • 2016
  • Granzyme A (GzmA) was first identified as a cytotoxic T lymphocyte protease protein with limited tissue expression. A number of cellular proteins are known to be cleaved by GzmA, and its function is to induce apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates during apoptotic cell death. Here, we demonstrated that histone H4 was cleaved by GzmA during staurosporine-induced cell death; however, in the presence of caspase inhibitors, staurosporine-treated Raji cells underwent necroptosis instead of apoptosis. Furthermore, histone H4 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. These results suggest that histone H4 is a novel substrate for GzmA in staurosporine-induced cells.

Cell Death Mediated by Vibrio parahaemolyticus Type III Secretion System 1 Is Dependent on ERK1/2 MAPK, but Independent of Caspases

  • Yang, Yu-Jin;Lee, Na-Kyung;Lee, Na-Yeon;Lee, Jong-Woong;Park, Soon-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.903-913
    • /
    • 2011
  • Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1-deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticus-induced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspase-independent mechanism.

인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향 (Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells)

  • 한민호;최영현
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.431-438
    • /
    • 2016
  • TRAIL은 정상세포에서는 세포독성을 나타내지 않는 반면, 암세포에서는 사멸을 유도하므로 항암제로 각광받고 있지만 많은 암세포에서 TRAIL에 저항성을 가지고 있는 것으로 알려져 있으므로 이를 극복해야하는 큰 어려움이 남아있다. 본 연구에서는 TRAIL에 저항성을 가지는 인간 방광암 세포주인 5637 세포를 이용하여 histone deacetylase 억제제인 sodium butyrate (SB)와 TRAIL을 혼합처리하였을 경우 유발되는 세포사멸 효과와 이와 관련된 분자생물학적 메카니즘을 연구하였다. 세포독성이 없는 조건의 TRAIL과 SB를 혼합처리 하였을 경우 SB 단독처리군 보다 세포사멸이 현저하게 증가하는 것으로 확인되었다. TRAIL과 SB의 혼합처리는 caspases (caspase-3, -8 and -9)의 활성화 및 PARP의 단편화를 유발하였다. 하지만 caspase 억제제에 의하여 TRAIL과 SB의 혼합처리에 의하여 유발되는 apoptosis가 현저하게 억제되는 것으로 나타났다. 또한 TRAIL과 SB의 혼합처리는 세포표면에 존재하는 DR5의 발현 증가 및 c-FLIP의 발현 감소를 유발하였으며, pro-apoptotic protein인 Bax와 세포질 cytochrome c의 발현 증가 및 anti- apoptotic protein인 Bcl-xL의 발현감소와 함께 tBid의 형성을 유발하였다. 이는 SB와 TRAIL의 혼합처리가 안전하고 선택적으로 TRAIL에 저항성을 가지는 방광암 세포에서 치료하는데 효과적인 전략임을 제시하는 결과이다.

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

Apicidin Induces Apoptosis via Cytochrome c-Mediated Intrinsic Pathway in Human Ovarian Cancer Cells

  • Ahn, Mee-Young;Na, Yong-Jin;Lee, Jae-Won;Lee, Byung-Mu;Kim, Hyung-Sik
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.17-24
    • /
    • 2009
  • Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents that inhibit cancer cell growth in vitro and in vivo. Previous report has shown that apicidin inhibited SK-OV-3 cells proliferation and down-regulation of cyclin B1 and CDK1, and up-regulation of $p21^{WAF1}$ and p27. However, the mechanism of apicidin-mediated apoptotic cell death is not clearly understood. For this study, we investigated the mechanism of apoptotic pathway induced by apicidin in human ovarian cancer cell. We found that SK-OV-3 cells treated with apicidin caused an increase in the percentage of cells in the G2/M phase, which preceded apoptosis characterized by the appearance of cells with sub-G1 population. To further investigate the mechanism of apoptosis induction by apicidin, we measured TUNEL assay, poly-ADP ribose polymerase (PARP) cleavage, and caspase activity in SK-OV-3 cells treated with apicidin for 48 h. Apicidin significantly enhanced apoptosis as measured by TUNEL positive apoptotic cells, PARP cleavage, and increased Bax/Bcl-2 ratio. Induction of apoptosis was confirmed by the release of cytochrome c to cytosol. Our data suggest that apicidin-induced apoptosis in SK-OV-3 cells was accompanied by caspase-3 activation and the increase in Bax/Bcl-2 ratio. These data suggest that apicidin may be effective in the treatment of ovarian cancer through activation of intrinsic apoptotic pathway.