Browse > Article
http://dx.doi.org/10.4014/jmb.1104.04044

Cell Death Mediated by Vibrio parahaemolyticus Type III Secretion System 1 Is Dependent on ERK1/2 MAPK, but Independent of Caspases  

Yang, Yu-Jin (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
Lee, Na-Kyung (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
Lee, Na-Yeon (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
Lee, Jong-Woong (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
Park, Soon-Jung (Department of Environmental Medical Biology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 903-913 More about this Journal
Abstract
Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1-deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticus-induced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspase-independent mechanism.
Keywords
Vibrio parahaemolyticus; mitogen-activated protein kinases; caspases;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665.   DOI   ScienceOn
2 Raimondi, F., J. P. Kao, C. Fiorentini, A. Fabbri, G. Donelli, N. Gasparini, et al. 2000. Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect. Immun. 68: 3180-3185.   DOI   ScienceOn
3 Nair, G. B., T. Ramamurthy, S. K. Bhattacharya, B. Dutta, Y. Takeda, and D. A. Sack. 2007. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20: 39-48.   DOI
4 Trosky, J. E., S. Mukherjee, D. L. Burdette, M. Roberts, L. McCarter, R. M. Siegel, and K. Orth. 2004. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J. Biol. Chem. 279: 51953-51957.   DOI
5 Ono, T., K. S. Park, M. Ueta, T. Iida, and T. Honda. 2006. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect. Immun. 74: 1032-1042.   DOI   ScienceOn
6 Orth, K., L. E. Palmer, Z. Q. Bao, S. Stewart, A. E. Rudolph, J. B. Bliska, and J. E. Dixon. 1999. Inhibition of the mitogenactivated protein kinase kinase superfamily by a Yersinia effector. Science 285: 1920-1923.   DOI
7 Tang, G. Q., T. Iida, K. Yamamoto, and T. Honda. 1995. $Ca^{2+}$-independent cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin (TDH) on Intestine 407, a cell line derived from human embryonic intestine. FEMS Microbiol. Lett. 134: 233-238.   DOI
8 Tang, G. Q., T. Iida, K. Yamamoto, and T. Honda. 1997. Analysis of functional domains of Vibrio parahaemolyticus thermostable direct hemolysin using monoclonal antibodies. FEMS Microbiol. Lett. 150: 289-296.   DOI   ScienceOn
9 Takahashi, A., T. Iida, R. Naim, Y. Naykaya, and T. Honda. 2001. Chloride secretion induced by thermostable direct hemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J. Med. Microbiol. 50: 870-878.   DOI
10 Troisfontaines, P. and C. R. Cornelis. 2005. Type II secretion: More systems than you think. Physiology 20: 326-339.   DOI   ScienceOn
11 Yarbrough, M. L., Y. Li, L. N. Kinch, N. V. Grishin, H. L. Ball, and K. Orth. 2009. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323: 269-272.   DOI
12 Burdette, D. L., M. L. Yarbrough, A. Orvedahl, C. J. Gilpin, and K. Orth. 2008. Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc. Natl. Acad. Sci. USA 105: 12497-12502.   DOI   ScienceOn
13 Trosky, J. E., Y. Li, S. Mukherjee, G. Keitany, H. Ball, and K. Orth. 2007. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 282: 34299-34305.   DOI
14 Casselli, T., T. Lynch, C. M. Southward, B. W. Jones, and R. DeVinney. 2008. Vibrio parahaemolyticus inhibition of Rho GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 76: 2202-2211.   DOI   ScienceOn
15 Daniels, N. A., L. MacKinnon, R. Bishop, S. Altekruse, B. Ray, R. M. Hammond, et al. 2000. Vibrio parahaemolyticus infections in the United States, 1973-1998. J. Infect. Dis. 181: 1661-1666.   DOI   ScienceOn
16 Hiyoshi, H., T. Kodama, T. Iida, and T. Honda. 2010. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect. Immun. 78: 1772-1780.   DOI   ScienceOn
17 Honda, T. and T. Iida. 1993. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct hemolysin and related hemolysin. Rev. Med. Microbiol. 4: 106-113.   DOI   ScienceOn
18 Akeda, Y., K. Okayama, T. Kimura, R. Dryselius, T. Kodama, K. Oishi, T. Iida, and T. Honda. 2009. Identification and characterization of a type III secretion associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus. FEMS Microbiol. Lett. 296: 18-25.   DOI   ScienceOn
19 Burdette, D. L., J. Seemann, and K. Orth. 2009. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol. Microbiol. 73: 639-649.   DOI   ScienceOn
20 Burdette, D. L., M. L. Yarbrough, and K. Orth. 2009. Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy 5: 100-102.   DOI   ScienceOn
21 Naim, R., I. Yanagihara, T. Iida, and T. Honda. 2001. Vibrio parahaemolyticus thermostable direct hemolysin can induce an apoptotic cell death in Rat-1 cells from inside and outside of the cells. FEMS Microbiol. Lett. 195: 237-244.   DOI   ScienceOn
22 Belmorkhtar, C. A., J. Hillion, and E. Segal-Bendirdjian. 2001. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20: 3354-3362.   DOI   ScienceOn
23 Bhattacharjee, R. N., K. Park, Y. Kumagai, K. Okada, M. Yamamoto, S. Uematsu, et al. 2006. VP1686, a Vibrio type III secretion protein, induces Toll-like receptor-independent apoptosis in macrophage through NF-kB inhibition. J. Biol. Chem. 281: 36897-36904.   DOI
24 Makino, K., K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda, K. Tagomori, et al. 2003. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743-749.   DOI   ScienceOn
25 Miller, V. L. and J. J. Mekalonos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583.   DOI
26 Milton, D. L., A. Norqvist, and H. Wolf-Watz. 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarium. J. Bacteriol. 174: 7235-7244.   DOI
27 Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1998. Improved broad-host-range plasmids for DNA cloning in Gramnegative bacteria. Gene 70: 191-197.
28 Kyosseva, S. V. 2004. Mitogen-activated protein kinase signaling. Int. Rev. Neurobiol. 59: 201-210.
29 Liverman, A. D., H. C. Cheng, J. E. Trosky, D. W. Leung, M. L. Yarbrough, D. L. Burdette, et al. 2007. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc. Natl. Acad. Sci. USA 104: 17117-17122.   DOI   ScienceOn
30 Morris Jr., J. G. 2003. Cholera and other types of vibriosis: A story of human pandemics and oysters on the half shell. Clin. Infect. Dis. 37: 272-280.   DOI   ScienceOn
31 Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433.