• Title/Summary/Keyword: Caspase-3/7

Search Result 405, Processing Time 0.025 seconds

Micro RNA 34a and Let-7a Expression in Human Breast Cancers is Associated with Apoptotic Expression Genes

  • Behzad, Mansoori;Ali, Mohammadi;Solmaz, Shirjang;Elham, Baghbani;Behzad, Baradaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1887-1890
    • /
    • 2016
  • Breast cancer is the most common cause of cancer-related death among women in the whole world. MiR- 34a and let-7a are well known tumor suppressors that participate in the regulation of apoptosis, invasion and other cellular functions. In this study, expression of miR-34a, let-7a and apoptosis pathway genes such as Bcl-2, Caspase-3 and P53 were evaluated using quantitative real-time PCR in 45 paired samples of normal margin and tumor tissue collected from breast cancer patient at advanced stage (3-4). MiR-34a, let-7a, caspase-3 and P53 expression are reduced and Bcl-2 expression is increased within tumoral tissues in comparison with normal margin tissues. P53 expression directly or indirectly was correlated with miR-34a, let-7a, Bcl-2 and caspase-3 expression. In This study we found that MiR-34a and let-7a expression are reduced in the tumoral tissues. Down-regulation of these two molecules correlated with expression of genes associated with apoptosis. These results suggest that due to the correlation of miR-34a and let-7a with apoptotic and anti-apoptotic pathways these molecules could participate as regulators in advanced clinical stages of breast cancer and should be considered as markers for diagnosis, prognostic assessment and targeted therapy.

Effect of radiation dose variation on expression of caspase-3 in rat submandibular glands (방사선 조사선량에 따른 백서 악하선의 caspase-3 발현양상)

  • Kwon Ki-Jeong;Choi Yong-Suk;Hwang Eui-Hwan;Lee Sang-Rae;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2006
  • Purpose : To investigate the caspase-3 expression in the acinar and ductal cells of rat submandibular glands after the irradiation of various doses. Materials and Methods : The male Sprague-Dawley rats weighing approximately 250 gm were used for this study. The experimental group was irradiated with a single absorbed dose of 2, 5, 10, and 15 Gy on the head and neck region. The rats were sacrificed on the 1st, 3rd, 7th, 14th, 21 st, and 28th day after irradiation. The specimens including the submandibular gland were sectioned and observed using histopathological and immunohistochemical methods. Results : The local destruction of the acinar and ductal cells and the karyopyknotic nuclei of the acinar cells were observed in the 2 Gy and 5 Gy irradiation groups later than in the 10 Gy and 15 Gy irradiation groups. And the expression of caspase-3 was prominent only in the ductal cells in the 2 Gy and 5 Gy irradiation groups. Conclusion : This experiment suggests that radiation-induced apoptosis in the ductal cells of rat submandibular glands was induced by a low dose radiation associated with the activation of caspase-3 and radiation-induced necrosis was induced by a high dose radiation.

  • PDF

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Induction of Human Hepatocellular Carcinoma HepG2 Cell Apoptosis by Naringin

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Khaw-on, Patompong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3289-3294
    • /
    • 2016
  • Naringin, a bioflavonoid found in Citrus seeds, inhibits proliferation of cancer cells. The objectives of this study were to investigate the mode and mechanism(s) of hepatocellular carcinoma HepG2 cell death induced by naringin. The cytotoxicity of naringin towards HepG2 cells proved dose-dependent, measured by MTT assay. Naringin-treated HepG2 cells underwent apoptosis also in a concentration related manner, determined by annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) employing flow cytometry. Mitochondrial transmembrane potential (MTP) measured using 3,3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and flow cytometer was reduced concentration-dependently, which indicated influence on the mitochondrial signaling pathway. Caspase-3, -8 and -9 activities were enhanced as evidenced by colorimetric detection of para-nitroaniline tagged with a substrate for each caspase. Thus, the extrinsic and intrinsic pathways were linked in human naringin-treated HepG2 cell apoptosis. The expression levels of pro-apoptotic Bax and Bak proteins were increased whereas that of the anti-apoptotic Bcl-xL protein was decreased, confirming the involvement of the mitochondrial pathway by immunoblotting. There was an increased expression of truncated Bid (tBid), which indicated caspase-8 proteolysis activity in Bid cleavage as its substrate in the extrinsic pathway. In conclusion, naringin induces human hepatocellular carcinoma HepG2 cell apoptosis via mitochondria-mediated activation of caspase-9 and caspase-8-mediated proteolysis of Bid. Naringin anticancer activity warrants further investigation for application in medical treatment.

Effects of Trogopterorum Faeces on the Apoptostic Cell Death in Breast Cancer Cells (오령지(五靈脂)가 유방암세포의 사멸에 미치는 영향)

  • Song, Yu-Rim;Kim, Ji-Eun;Yang, Seung-Jeong;Park, Kyung-Mi;Jung, Su-Jung;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.1
    • /
    • pp.46-57
    • /
    • 2015
  • Objectives: This study was designed to investigate the effects of Trogopterorum Faeces on the apoptostic cell death in breast cancer cells. Methods: In the experiment, the effects of Trogopterorum Faeces on proliferation rates and type of cell death were investigated using MCF-7 cells in vitro. The effects on expression levels of caspase 3 and caspase 9 were also investigated. Results: The effects on expression levels of caspase 3 and caspase 9 were also investigated. In the present results, treatment with Trogopterorum Faeces decreased proliferation rates in a dose dependent manner. $ID_{50}$ (50 % inhibitory dosage) was $177.2{\mu}g/ml$. In addition, treatment with Trogopterorum Faeces increased percentage of apoptotic cells. Finally the expression level of caspase 3 and caspase 9 were elevated by treatment with Trogopterorum Faeces respectively. Conclusions: This study suggests that Trogopterorum Faeces can trigger caspase dependent apoptosis in MCF-7 cells.

Mechanism of Apoptosis Induced by Spermine in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포주에 있어서 spermine에 의해 유도된 세포사멸 기작)

  • Jang, Eun-Seong;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1177-1185
    • /
    • 2008
  • In the present work, we show that spermine (spm)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Spm induced the intracellular $Ca^{2+}$ increase in a dose-dependent manner in the medium containing 1.5 mM $Ca^{2+}$. Even in the $Ca^{2+}$-free medium, spm could induce a minor $Ca^{2+}$ increase in a dose-dependent fashion, suggesting a probable leak from the internal storage. The cytotoxic effect of $Ca^{2+}$ could be further proved by using either BAPTA or ionophore. Spm-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with spm, the cleavage of caspase-7 and -12 was increased almost two-fold. The level of anti-apoptotic Bcl-2 protein decreased to 35% of the control; however, the cells showed increased expression of pro-apoptotic Bax protein about two-fold in response to spm. These results imply that the apoptotic signaling pathway activated by spm is likely to be mediated via the mitochondrial-dependent pathway.

Tamoxifen Induces Mitochondrial-dependent Apoptosis via Intracellular Ca2+ Modulation (탐옥시펜에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 의존적 세포사멸)

  • Jang, Eun-Seong;Kim, Ji-Young;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1053-1062
    • /
    • 2007
  • In the present work, we show that tamoxifen(Tam)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Tam induced the intracellular $Ca^{2+}$ increase. According to the experimental results with $Ca^{2+}$ channel blockers, Tam-induced $Ca^{2+}$ uptake seemed to depend on the voltage-sensitive $Ca^{2+}$ channel at the early stage, but at later stages the intracellular $Ca^{2+}$ increases are more likely due partly to the release of stored $Ca^{2+}$ and partly to the capacitative $Ca^{2+}$ or other entry pathways. Tam-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with Tam, caspase-7 cleavage was increased almost two-fold. There was no marked alteration in the level of anti-apoptotic Bcl-2 protein; however, the cells showed increased expression of pro-apoptotic Bax protein more than two-fold in response to Tam. These results imply that the apoptotic signaling pathway activated by Tam is likely to be mediated via the mitochondrial-dependent pathway.

Research on the Anti-Breast Cancer and Anti-Inflammatory Effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum (청간해울탕(淸肝解鬱湯)과 십륙미유기음(十六味流氣飮)의 유방암에 대한 항암, 항염 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate anti-breast cancer and anti-inflammatory effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum. Methods: MDA-MB-231 cells were used to measure cytotoxicity, Reactive oxygen species (ROS) production, protein expression amounts of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), Cytochrome C Caspase-3, Caspase-7, Caspase-9, Poly ADP-ribose polymerase (PARP), Nuclear factor erythroid-2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD (P) H Quinone Oxidoreductase 1 (NQO1) to evaluate the anti-breast cancer effects of Chungganhaewool-tang (CHT) and Shipyeukmiyeugi-eum (SYE), and THP-1 cells, differentiated into macrophage and induced inflammation with Lipopolysaccharide (LPS), were used to measure production amounts of ROS, Nitric oxide (NO), and protein expression amounts of Inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX-2), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor-alpha (TNF-α) to evaluate the anti-inflammatory effects of CHT and SYE. Results: CHT and SYE reduced MDA-MB-231 cell counts, increased protein expression of Bax and Cytochrome C, and decreased protein expression of Bcl-2, Bcl-xl. The protein expression amounts of Caspase-3, 7, and 9 decreased, but amounts of the active form, cleaved Caspase-3, 7, and 9, increased. In addition, PARP protein expression decreased, the amount of PARP protein in the cleaved form increased, and the amount of protein expressions of Nrf2 and HO-1 decreased, but NQO1 showed no significant difference. In THP-1 cells CHT and SYE reduced ROS and NO, and reduced protein expressions of iNOS, COX-2, IL-1, and TNF-α, but only SYE groups reduced IL-6. Conclusions: This study suggests that CHT and SYE have potential to be used as treatments for breast cancer.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.

The Anti-inflammatory Mechanism of Blueberry is through Suppression of NF-kB/Caspase-1 Activation in LPS-induced RAW264.7 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • Korean Journal of Plant Resources
    • /
    • v.37 no.3
    • /
    • pp.256-262
    • /
    • 2024
  • Blueberry (BB), fruit of Vacciniumi, has been hailed as an antioxidant superfood. BB is a rich source of vitamins, minerals, flavonoids, phenolic acids and known to have a variety of pharmacological actions. The purpose of this work is to clarify the anti-inflammatory mechanism of BB in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. We explored the effects of BB on the production of inflammatory cytokines, prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 macrophage. Moreover, to investigate the molecular mechanisms by BB, we evaluated whether BB modulate nuclear factor-kappa B (NF)-kB pathway and caspase- 1 activation. The findings of this work demonstrated that BB alleviated the LPS-enhanced inflammatory cytokines and PGE2, as well as COX-2 levels. Additionally, we demonstrated that the anti-inflammatory mechanism of BB occurs due to the attenuation of IκB-α degradation, NF-kB translocation and caspase-1 activation. Conclusively, these findings provide evidence that BB may be useful agents in the treatment of inflammation.