CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Kim, Kun-Jung (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Jong-Gil (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Chai-Ho (Division of Natural Science and Technology, College of Natural Sciences, Wonkwang University) ;
  • Han, Dong-Min (Division of Natural Science and Technology, College of Natural Sciences, Wonkwang University) ;
  • Yun, Young-Gab (Department of Prescription, College of Oriental Medicine, Wonkwang University) ;
  • Hong, Gi-Yun (Department of Obstetric and Gynecology, College of Medicine, Wonkwang University) ;
  • An, Won-Gun (Department of Oral Pathology, College of Dentistry, Pusan National Universsity) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University)
  • Published : 2005.06.25

Abstract

The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.

Keywords

References

  1. Anan, H., Tanaka, A., Tsuzuki, R, Yokota, M., Yatsu, T. and Fujikura, T., 4-(3,4-Dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline derivatives. II. Their renal vasodilation activity and structure-activity relationship. Chem. Pharm. Bull. (Tokyo), 44, 1865-1870, 1996.
  2. Chau, P., Czuba, I.R, Rizzacasa, M.A, Bringmann, G., Gulden, K.P. and Schaffer, M. Convergent Synthesis of Naphthylisoquinoline Alkaloids: Total Synthesis of (+)-O-Methylancistrocline. J. Org. Chem., 61, 7101-7105, 1996.
  3. Corey, E.J. and Gim D.Y., A convergent enantioselective synthesis of the tetrahydroisoquinoline unit in the spiro ring of ecteinascidin 743. Tetrahedron Lett., 37, 7163-7166, 1996.
  4. Dong, H., Lee, CM., Huang, W.L. and Peng, S.X., Cardiovascular effects of substituted tetrahydroisoquinolines in rats. Br. J. Pharmacol., 107, 262-268, 1992.
  5. Grunewald, G.L., Dahanukar, V.H., Caldwell, T.M. and Criscione, K.R, Examination of the role of the acidic hydrogen in imparting selectivity of 7-(aminosulfonyl)-1,2,3,4- tetrahydroisoquinoline (SK&F 29661) toward inhibition of henylethanolamine N-methyltransferase vs the alpha 2-adrenoceptor. J. Med. Chem, 40, 3997-4005, 1997.
  6. Hallocka, Y.F., Cardellina, II, Kornekb, T., Guldenb, KP., Bringmann, G. and Boyd, M.R, Gentrymine BI, the first quaternary isoquinoline alkaloid from Ancistrocladus korupensis. Tetrahedron Lett., 36, 4753-4756, 1995.
  7. Hoye, T.R and Mi, L., Total syntheses of korupensarnine C and ancistrobrevine B. Tetrahedron Lett., 37, 3097-3098, 1996.
  8. McNaught, KS., Thull, V., Carrupt, P.A., Altomare, C, Cellamare, S., Carotti, A, Testa, B., Jenner, P. and Marsden, C D., Inhibition of complex I by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP). Biochem. Pharmacol., 50, 1903-1911, 1995.
  9. McNaught, KS., Thull, V., Carrupt, P.A., Altomare, C, Cellamare, S., Carotti, A, Testa, B., Jenner, P. and Marsden, C D., Inhibition of [3H)doparnine uptake into striatal synaptosomes by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem. Pharmacol., 52, 29-34, 1996.
  10. Nakagawa, H., Makino, Y., Yoshida, Y., Ohta, S. and Hirobe, M., A novel metabolite of 3,4-methylenedioxyamphetamine (MDA): formation of 3-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline and its pharmacological effect. Biol, Pharm. Bull., 16, 579-82, 1993.
  11. Ohkubo, M., Kuno, A, Katsuta, K, Veda, Y., Shirakawa, K, Nakanishi, H., Nakanishi, I., Kinoshita, T.and Takasugi, H., Studies on cerebral protective agents. IX. Synthesis of novel 1,2,3,4-tetrahydroisoquinolines as N-methyl-D-aspartate antagonists. Chem. Pharm. Bull. (Tokyo), 44, 95-102, 1996.
  12. Salvadori, S., Balboni, G., Guerrini, R, Tomatis, R, Bianchi, C, Bryant, S. D., Cooper, P. S. and Lazarus, L. H., Evolution of the Dmt-Tic pharmacophore: N-terminal methylated derivatives with extraordinary delta opioidantagonist activity. J. Med. Chem., 40, 3100-3108, 1997.
  13. Scott, J.D. and Williams, RM., Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 102, 1669-1730, 2002.
  14. Shirahata, A, Yoshioka, M., Tamura, Z., Fluorometric determination of 1,2,3,4-tetrahydro-6,7-dihydroxyisoquinoline in biological materials by HPLC Chem. Pharm. Bull. (Tokyo), 45, 1814-1819, 1997.
  15. VanAtten, M.K., Ensinger, CL., Chiu, AT., McCall, D.E., Nguyen, T.T., Wexler, RR and Timmermans, P.B., A novel series of selective, non-peptide inhibitors of angiotensin II binding to the AT2 site. J. Med. Chem., 36, 3985-3992, 1993.
  16. Whaley, W. M. and Govindachari T. R, The Preparation of 3,4-Dihydroisoquinolines and Related Compounds by the Bischler-Napieralski Reaction. Org. React., 6, 74-206, 1951.
  17. Kalechman, Y., Longo, D. L., Catane, R, Shant A., Albeck, M. and Sredni, B. Synergistic anti-tumoral effect of paclitaxel (Taxol)+AS101 in a murine model of B16 melanoma: association with ras-dependent signal-transduction pathways. Int J Cancer. 86, 281-288, 2000.
  18. Gamet-Payrastre, L., Li. P., Lumeau, S., Cassar, G., Dupont, M.A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60, 1426-1433, 2000.
  19. Ling, Y.H., Yang, Y., Tornos, C, Singh, B. and Perez-Soler, R Paclitaxel-induced apoptosis is associated with expression and activation of c-Mos gene product in human ovarian carcinomaSKOV3 cells. Cancer Res. 58, 3633-3640, 1998.
  20. Nieves-Neira, W. and Pommier, Y. Apoptotic response to camptothecin and 7-hydroxystaurosporine (VCN-OI) in the 8 human breast cancer cell lines of the NCI Anticancer Drug Screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. nt J Cancer. 82, 396-404, 1999.
  21. Piazza, G.A, Rahm, AL., Krutzsch, M., Sperl, G., Paranka, NS., Gross, P.H., Brendel, K, Burt, RW., Alberts, OS. Pamukcu, Rand et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 55, 3110-3116, 1995.
  22. Evan, G. and Littlewood, T. A matter of life and cell death. Science. 281, 1317-1322, 1998.
  23. Thornberry, N.A. and Lazebnik, Y. Caspases: enemies within. Science. 281, 1312-1316, 1998.
  24. Piao, W., Yoo, J., Lee, D.K, Hwang, H.J. and Kim, J.H. Induction of G(2)/M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. Biochem Pharmacol. 62, 1439-1447, 2001.
  25. Kim, R, Tanabe, K, Uchida, Y., Emi, M., Inoue, H. and Toge, T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol. 50, 343-352, 2002.
  26. Ashkenazi, A. and Dixit, V.M. Apoptosis control by death and decoy receptors. Curro Opin. Cell Biol., 11, 255-260, 1999.
  27. Sun, X.M., Macfarlane, M., Zhuang, J, Wolf, B.B., Green, DR and Cohen, G.M. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem. 274, 5053-5060, 1999.
  28. Green, DR Apoptotic pathways: the roads to ruin. Cell. 94, 695-698, 1998.
  29. Kroemer, G., Zamzami, N. and Susin, S.A Mitochondrial control of apoptosis. Immunol Today. 18, 44-51, 1997.
  30. Mignotte, B. and Vayssiere, J.L. Mitochondria and apoptosis. Eur J Biochem. 252, 1-15, 1998.
  31. Zou, H., Li, Y., Liu, X. and Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 274, 11549-11556, 1999.
  32. Luo, X., Budihardjo, I., Zou, H, Slaughter, e. and Wang, X. Bid, a Bel2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94, 481-490, 1998.
  33. Li. H, Zhu, H., Xu, C. J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491-501, 1998.
  34. Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T. G. and Green, D. R Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bel-xL. J Biol Chem. 274, 2225-2233, 1999.
  35. Murphy, KM., Streips, U.N. and Lock, RB. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bel-2. Oncogene. 18, 5991-5999, 1999.
  36. Kluck, RM., Bossy-Wetzel, E., Green, D.R and Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bel-2 regulation of apoptosis. Science. 275, 1132-1136, 1997.
  37. Gross, A, McDonnell, J.M. and Korsmeyer. S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911, 1999.
  38. Hsu, Y.T. and Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergentinduced conformations. J Biol Chem. 273, 10777-10783, 1998.
  39. Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, I.G., Green, D.R Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bel-xL. J Biol Chem. 274, 2225-2233, 1999.
  40. Pae. H.O., Oh, H., Yun, Y.G., Oh, c.s, Jang, S.I., Hwang, K M., Kwon, T.O., Lee, H.s. and Chung, H.T. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 Cells. Pharmacol Toxicol. 91, 40-48, 2002.
  41. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bel2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94, 481-490, 1998.
  42. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K, Antonsson, B. and Martinou, J.C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 144, 891-901, 1999.
  43. Eskes, R, Desagher, S., Antonsson, B. and Martinou, I.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 20, 929-935, 2000.
  44. Korsmeyer, S.J., Wei, M.C., Saito, M., Weiler, S., Oh, KJ. and Schlesinger, P.H Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166-1173, 2001.
  45. Ruffolo, S.C, Breckenridge, D.G., Nguyen, M., Goping, I.S., Gross, A, Korsmeyer, S.J., Li, H., Yuan, J. and Shore, G.C. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 7, 1101-1108, 2001.
  46. Hockenbery, D., Nunez, G., Milliman, C, Schreiber, RD. and Korsmeyer, S.J. BcI-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 348, 334-336, 1990.
  47. Muzio, M., Stockwell, B.R., Stennicke, H.R, Salvesen, G.S. and Dixit, V. M. An induced proximity model for caspase-8 activation. J Biol Chem. 273, 2926-2930, 1998.
  48. Srinivasula, S.M., Ahmad, M., Fernandes-Alnemri, T. and Alnemri, E.S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1, 949-957, 1998.
  49. Muller, M., Strand, S., Hug, H., Heinemann, E.M., Walczak, H., Hofmann, W.J., Stremmel, W., Krammer, P.H. and Galle, P. R. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest. 99, 403-413, 1997.
  50. Muzio, M., Chinnaiyan, AM., Kischkel, F.C., O'Rourke, K, Shevchenko, A, Ni, J., Scaffidi, C, Bretz, J.D., Zhang, M., Gentz, R, Mann, M., Krammer, P.H., Peter, M.E. and Dixit, V. M. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell. 85, 817-827, 1996.
  51. Medema, J.P., Scaffidi, C., Kischkel, F.C., Shevchenko, A., Mann, M., Krammer, P.H., Peter, M.E. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794-2804, 1997.
  52. Liu, X., Kim, C'N, Yang, J., Jemmerson, R, Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATPand cytochrome c. Cell. 86, 147-157, 1996.
  53. Reed, J.C. Cytochrome c: can't live with it-can't live without it. Cell. 91, 559-562, 1997.
  54. Kuwana, T., Smith, J.J., Muzio, M., Dixit, V., Newmeyer, D. D. and Kornbluth, S. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem. 273, 16589-16594, 1998.
  55. Zhuang, S., Lynch, M.C. and Kochevar, I.E. Caspase-S mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp Cell Res. 250, 203-212, 1999.
  56. Srivastava, RK., Mi, Q.S., Hardwick, J.M. and Longo, D.L. Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci USA. 96, 3775-3780, 1999.
  57. Jurgensmeier. J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., Reed, J.C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA. 95, 4997-5002, 1998.