• 제목/요약/키워드: Case Prediction

Search Result 2,145, Processing Time 0.032 seconds

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.

Study on Predicting Changes in Traffic Demand in Surrounding SOCs Due to Road SOC Construction Using Big Data - Centered Around the Connecting Road between Incheon Yeongjong International City and Cheongna International City (3rd Bridge) - (빅데이터를 활용한 도로 SOC건설에 따른 주변 SOC 교통수요 변화 예측 연구 - 인천 영종국제도시~청라국제도시 간 연결도로(제3연륙교)를 중심으로 -)

  • Byoung-Jo Yoon;Sang-Hun Kang;Seong-Jin Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.705-713
    • /
    • 2024
  • Purpose: Currently, the only routes that enter Yeongjong Island are Yeongjong Bridge and Incheon Bridge, which are private roads. The purpose of this study is to predict and study changes in transportation demand for new routes and two existing routes according to the plan to open the 3rd Bridge, a new route, in December 2025. Method: The basic data for traffic demand forecast were O/D and NETWORK data from 2021.08, KOTI. In order to examine the reliable impact of Yeongjong Bridge and Incheon Bridge on the opening of the 3rd Bridge, it is necessary to correct the traffic distribution of Yeongjong Island and Incheon International Airport to suit reality, and in this study, the trip distribution by region was corrected and applied using Mobile Big Data. Result: As of 2026, the scheduled year of the opening of the 3rd Bridge, two alternatives, Alternative 1 (2,000 won) and Alternative 2 (4,000 won), were established and future transportation demand analysis was conducted, In the case of Alternative 1, which is similar to the existing private road toll restructuring, the traffic volume of the 3rd Bridge was predicted to be 42,836 out of 199,101 veh/day in the Yeongjong area in 2026, and the traffic volume reduction rate of the existing road was analyzed as 21.5%. Conlclusion: As a result of the review (based on Alternative 1), the proportion of convertted traffic on the 3rd Yanji Bridge was estimated to be 70% of Yeongjong Bridge and 30% of Incheon Bridge, and 21.5% of the predicted traffic reduction on the existing road when the 3rd Yanji Bridge was opened is considered appropriate considering the results of the case review and changes in conditions. It is judged that it is a way to secure the reliability of the prediction of traffic demand because communication big data is used to reflect more realistic traffic distribution when predicting future traffic demand.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

Recent Trends in Blooming Dates of Spring Flowers and the Observed Disturbance in 2014 (최근의 봄꽃 개화 추이와 2014년 개화시기의 혼란)

  • Lee, Ho-Seung;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The spring season in Korea features a dynamic landscape with a variety of flowers such as magnolias, azaleas, forsythias, cherry blossoms and royal azaleas flowering sequentially one after another. However, the narrowing of south-north differences in flowering dates and those among the flower species was observed in 2014, taking a toll on economic and shared communal values of seasonal landscape. This study was carried out to determine whether the 2014 incidence is an outlier or a mega trend in spring phenology. Data on flowering dates of forsythias and cherry blossoms, two typical spring flower species, as observed for the recent 60 years in 6 weather stations of Korea Meteorological Administration (KMA) indicate that the difference spanning the flowering date of forsythias, the flower blooming earlier in spring, and that of cherry blossoms that flower later than forsythias was 30 days at the longest and 14 days on an average in the climatological normal year for the period 1951-1980, comparing with the period 1981-2010 when the difference narrowed to 21 days at the longest and 11 days on an average. The year 2014 in particular saw the gap further narrowing down to 7 days, making it possible to see forsythias and cherry blossoms blooming at the same time in the same location. 'Cherry blossom front' took 20 days in traveling from Busan, the earliest flowering station, to Incheon, the latest flowering station, in the case of the 1951-1980 normal year, while 16 days for the 1981-2010 and 6 days for 2014 were observed. The delay in flowering date of forsythias for each time period was 20, 17, and 12 days, respectively. It is presumed that the recent climate change pattern in the Korean Peninsula as indicated by rapid temperature hikes in late spring contrastive to slow temperature rise in early spring immediately after dormancy release brought forward the flowering date of cherry blossoms which comes later than forsythias which flowers early in spring. Thermal time based heating requirements for flowering of 2 species were estimated by analyzing the 60 year data at the 6 locations and used to predict flowering date in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species at all 6 locations, showing a feasibility of thermal time as a prognostic tool.

Development on Early Warning System about Technology Leakage of Small and Medium Enterprises (중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구)

  • Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 2017
  • Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.

A Study of Factors Affecting Measurement of Kidney Size in Ultrasonography (초음파로 신장의 크기 측정 시 미치는 영향에 관한 연구)

  • Yoon, Seok-Hwan;Kim, Yun-Min;Choi, Jun-Gu
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.161-169
    • /
    • 2008
  • Since measuring the size of kidney with sonography becomes an important index for diagnosis, treatment, and prognostic prediction in kidney disease, the accurate measurement and evaluation on this are clinically very important. Accordingly, the purpose of this study was to increase reproducibility and objectivity in measuring the size of kidney by enumerating factors that have an impact for measurement. It targeted 44 adults in Korea at the age of 21-27. It measured in order for both kidneys to be seen most largely while changing a subject-examiner's position in a state of fasting for 8 hours and a transducer's approaching direction. It compared a size of kidney by measuring, respectively, with the same method in 30 minutes and in 1 hour after drinking water in 700-1,000cc. In case of the lateral approach scan in decubitus position, the average length of the kidney both to the right and the left and the deviation of measurement to be the largest. In NPO(None Per Oral) state, the average length in the right kidney was 10.19cm, and the average length in the left kidney was 10.33cm. In 60 minutes after taking moisture, the average length in the right kidney was 10.94cm, and the average length in the left kidney was 11.13cm. In comparing the average length of the kidney in NPO state and its average length in 60 minutes after taking moisture, the size swelled by 7.3% for the length in the right kidney and by 7.7% in the left, thereby having been indicated to be statistically significant(P<0.003). The measurement in a size of kidney by using ultrasound may be measured differently depending on a patient's state of taking moisture and a transducer's approaching direction. It is thought that when the measurement in a size of kidney is especially important clinically, the intake and intake time in moisture need to be considered and that measuring with the posterior approach in prone position is a good method aiming to increase reproducibility in measuring length of the kidney.

  • PDF

Prediction of Dietary Protein-Energy Balance by Milk Urea Nitrogen and Protein Contents in Dairy Cow (젖소의 우유 중 단백질과 요소태질소 측정에 의한 사료의 에너지와 단백질 균형 상태 예측)

  • Moon, J.S.;Joo, Y.S.;Kang, H.M.;Jang, G.C.;Kim, J.M.;Lee, B.K.;Park, Y.H.;Son, C.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.573-584
    • /
    • 2002
  • Milk urea nitrogen (MUN) and Milk protein (MP) are being used as indicators of the protein-energy balance and for actual farm feeding practices. The purpose of this study was to investigate the MUN and MP concentrations of individual cows and bulk tank milk to evaluate the dietary protein-energy balance from lactating Holstein cows. Mean MUN and MP concentrations in the milk samples obtained from 132,636 cows of 4,856 herd during Jan. 1999 to Dec. 2001 were 16.2 5.2mg/dl and 3.30 0.35%, respectively. The highest values were found during summer and lowest valued during winter in MUN. But, the average contents of MP were the highest during winter and the lowest during summer. In order to evaluate protein-energy balance for feeding, we set the level of recommended MP range of 2.90${\sim}$3.29% in early lactation considering a negative energy balance. The recommended level of MP in mid-lactation and late lactation were set as 3.10${\sim}$3.49%, and 3.30${\sim}$3.69%, respectively. Recommended MUN range of 12${\sim}$18 mg/dl was determined through the whole lactation period. Individual cows milk were analyzed by the 9 types based on this levels of MP and MUN in this study. Among the total cows investigated, 26.8%, 25.8%, and 22.2% have shown the recommended criteria of MP and MUN values, respectively. Also, of total herds surveyed, 11.6% had MUN values lower than 12.0 mg/dl and 32.9% had values higher than 18.0 mg/dl and 44.5% of total herd have not met with the recommended criteria of MP values in bulk tank milk. In case of MP, out of the total herd surveyed, 26.0% had MP values lower than 3.10% and 24.0% had values higher than 3.30% and 50.0% had MP values outside the recommended interval (3.1${\sim}$3.3%). This study has indicates that many dairy farms are under improper feeding management practice of the dietary protein-energy balance.