• Title/Summary/Keyword: Cartesian

Search Result 667, Processing Time 0.032 seconds

A Study on 800 MHz 1W Cartesian Feedback Linearized Power Amplifier for TETRA Signals (TETRA 신호를 위한 800 MHz 대역 1W 급 Cartesian feedback 선형 전력 증폭기에 관한 연구)

  • Oh, Duk-Soo;Kim, Ji-Yeon;Chun, Sang-Hyun;Kim, Jong-Heon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.76-85
    • /
    • 2008
  • In this paper, a 800 MHz 1 W cartesian feedback linearized power amplifier is designed and fabricated for TETRA handset application. For amplification of TETRA signal with 200 kHz narrow bandwidth, amplifier linearization performance of more than 30 dBc is improved through the cartesian feedback linearizer at the offset Sequency of ${\pm}25$ kHz. It is clear that the linearization performance is affected by imbalance of gain and phase between I/Q signals and also DC offset. The linearization performance can be maximized by the compensation of those influences. Cartesian feedback is suitable for a liearization technique of narrow band signal with QAM and another modulation signals, as well.

  • PDF

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

A Study on Straight Line Trajectoties of Robot Mainpulator in Cartesian Space (직각좌표 공간에서 로봇 매니퓰레이터의 직선 궤적계획에 관한 연구)

  • Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.763-766
    • /
    • 1991
  • The moving of each axis in the robot manipulator can be represented with the motion of cartesian space. This paper shows the robot manipulator of the straight line trajectory planning algorithms in the cartesian space. The relation formulas between cartesian space and joint space are induced to accomplish a desired trajectory in the cartesian space and the velocity vector of sampling time in the cartesian space is transformed into the velocity vector of joint by the interpolation method. The error of trajectory in moving is removed by obtaining the real position for the present joint position and the desired distance is made by comparing the real position and the next position. Through the simple tests for suggested algorithms are confirmed the validity of algorithms.

  • PDF

Multibody Dynamics Formulation based on Relative Cartesian Coordinates for Subsystem Dynamic Analysis (부분 시스템 해석을 위한 상대 직교 좌표를 이용한 다물체 동역학 공식)

  • Kim, Sung-Soo;Song, Kum-Jung;Huh, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.899-904
    • /
    • 2004
  • Multibody dynamics formulation has been developed based on relative cartesian coordinates for subsystem analysis. Relative cartesian coordinates are defined with respect to a reference body of a subsystem. Relative cartesian formulation inherits the same merits of absolute cartesian formulation, such as generality and easy implementation. Two methods have been applied. One is Largrange Multiplier Elimination method and the other is independent coordinate method. A 1/4 car simulation has been carried out to verify the formulations. Since both methods provide identical results, it proves the validity of the formulation.

  • PDF

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

CONSTRUCTION OF CARTESIAN AUTHENTICATION CODES OVER UNTITRAY GEOMETRY

  • Xu, Wenyan;Gao, You
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1481-1488
    • /
    • 2009
  • A construction of Cartesian authentication codes over unitary geometry is presented and its size parameters are computed. Assuming that the encoding rules are chosen according to a uniform probability distribution, the probabilities of success for different types of attacks are also computed.

  • PDF

Cartesian Coordinate Control of Robot Motion (로보트 운동에 대한 공간 좌표 제어)

  • 노영식;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

The Basis Number of the Cartesian Product of a Path with a Circular Ladder, a Möbius Ladder and a Net

  • Alzoubi, Maref Y.;Jaradat, Mohammed M.M.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.165-714
    • /
    • 2007
  • The basis number of a graph G is the least positive integer $k$ such that G has a $k$-fold basis. In this paper, we prove that the basis number of the cartesian product of a path with a circular ladder, a M$\ddot{o}$bius ladder and path with a net is exactly 3. This improves the upper bound of the basis number of these graphs for a general theorem on the cartesian product of graphs obtained by Ali and Marougi, see [2]. Also, by this general result, the cartesian product of a theta graph with a M$\ddot{o}$bius ladder is at most 5. But in section 3 we prove that it is at most 4.

  • PDF

A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators (전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어)

  • Lee Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.