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Cartesian Coordinate Control of Robot Motion
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Abstract

An effective cartesian coordinate model is presented to control a robot motion along a prescribed time-
based hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing
self-tuning control methods without requiring a detailed mathematical description of the system dynamics.
Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is
mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO
models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by
which the number of parameters to be identified is minimized. The self-tuners are designed to minimize a
chosen performance criterion, and the computed control forces are resolved into applied joint torques by the
Jacobian matrix, The robustness of the model and controller is demonstrated by comparing with the other
cartesian coordinate controllers.

. different phases in robot motion control. The one
1. Introduction . . . S
stems from its use in simulation of robot motion in
order to test control strategies and manipulator pro-

Th i i t role in t
e dynamic models play an impotant role in two grams without the expense and mechanical problems

‘T @ B Eitrk L85 BETSH #LEE of working with actual manipulators!’ and its use in
*IE @ B EHA TA BETEH &2 . T8 analysis of manipulator dynamics which could aid in the
BSHE 19854 128 278 mechanical design of prototype arms 2. The two main
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approaches towards deriving the dynamic equations of
motion for manipulators have been the Lagrange-
Euler equations and the Newton-Euler equations in
the form of highly interactive cross coupled non-linear
system.

The other is that they are utilized to determine con-
trol laws of strategies to achieve the desired system
response and performance. A number of models have
been proposed: the nonlinear model derived on the
basis of Newtonian mechanies ®’, the linearized model
by introducing a nonlinear feedback loop into the
system such that the nonlinear terms in the
manipulator model are cancelled ) the linear pertur-
bation models which are obtained by the linearization
about the desired trajectory®, and the linear
autoregressive models which fit the input-output data
from the manipulator®’. However, the parameters in
these models are not known exactly, and vary as the
payload which is often unknown. For these reasons,
there is an increasing interest in adaptive control of
mechanical manipulators.

Dubowsky 7’ proposed a model referenced adaptive
control which uses a linear second-oder differential
equation as the reference model for each joint of the
robot arm. Koivo® proposed an adaptive self-tuning
controller using an autoregressive model in joint coor-
dinates. Both algorithms assume that the interaction
forces among the joints are negligible; thus, the
dynamic model of the manipulator is simplified.
However, if the desired motion of a manipulator is
specified in terms of a time-based hand trajectory, the
equation of motion of the manipulator hand should be
derived in cartesian coordinates. Lee® developed a
resolved motion adaptive control based on the lineariz-
ed purturbation system in catesian coordinate. Lein-
inger ® proposed the pole placement self-tuner assum-
ing that the dynamics of hand position error can be
represented as second-oder autoregressive form for
each degree of freedom in cartesian coordinates.

In this paper, a cartesian coordinate model is pro-
posed which is given in first-order autoregressive type
for velocity and force of the manipulator hand. Based
on this model, a self-tuning controller is designed to
adjust control parameters on-line using the system
parameter identification methods so that a chosen per-
formance criterion is minimized. Simplication of the
model is discussed with special emphasis on the
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robustness of scalar self-tuner using SISO model.

The proposed control scheme is applied to the con-
trol of JPL—Stanford Arm, and is compared with the
other cartesian coordinate control methods.

2. Cartesian Coordinate Self-tuner

The dynamics of a six-joint manipulator can be
derived either by Lagrange-Euler or Newton-Euler
formulations. In general, the Lagrange-Euler equa-
tions of motion of a six-joint manipulator can be ex-
pressed in vector matrix notation as,

(1)

where 7 is a 6 by 1 applied torque vector for joint ac-

D(g)4(t) +H(g, 9)+Glg)=1

tuators, and q is a 6 by 1 joint position vector.
Since the inertia matrix, D(q), is always nonsingular,
€(t) can be obtained from (1):

4=D""(q)[r —H(q, 9 —G(q)]

To apply the STC (Self-Tuning Control) algorithm, a
discrete time model of the manipulator is proposed.
Using the first-order approximation of the Taylor
series expansion about the time, a multivariable
discrete time-varing model for the control system can
be obtained:

q(k+1)=q(k) + TD'(q) [r—H(q, @) —G(q)]
=q(k) +A(k) r (k) +a(k)

(2)

3)
where T is a sampling time,

Al)=TD"!(q), .
and a(k)=—TD~'(q) [H(q, @ +G(q)]
To derive the equation of motion of the manipulator
hand in cartesian coordinates, the velocity v and force
f of the manipulator hand are defined as follows,

v={(Vx, Vy, Vz, Wx, wy, w)? (4-a)

f=(f, fv, f, my, my, m,)T (4-b)

where vy is linear velocity, wy is angular velocity, f,
is force, and my is moment, along x-axis of reference
coordinate frame.

Based on the concept of moving coordinate frame,
the joint velocity and torque can be obtained from the
hand velocity and force, respectively,

4= (@) v
r=J"()f

(5-a)
(5-b)
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where J(q) is the 6 by 6-Jacobian matrix whose i th col-
umn veetor Ji can be found from,

[Zi—l X (p—pi-1)

. ];if joint i is rotational
i—1

]

where X indicates cross product, p; is the position of
the origin of the (i-Dth coordinate frame with respect
to the reference frame, zj ) is the unit vector along the
axis of motion of joint i, and p is the position of the

;if joint i is translational

hand with respect to the reference coordinate frame.
Using (4), (5-a), and (5-b), (3) can be expressed as,

vk +1)=v(k)+ (@) Adk) JT(@ f(k) + J(@) ak)
=v(k)+B(k) (k) + bk)

where B(k)=J(q) A(k) JT(q), and b(k)=J(q) a(k)
Computational time delay is accounted by,
£(k) = u(k-1)

where u(k) is the control input. Introducing e(k) as the

modeling errors, the equation of the manipulator hand

(6

in cartesian coordinates can be obtained for STC con-
trol system,

vk +1)=v(k)+ B(k) uk-1)+b(k) + e(k)

Equation (7) is first-order MIMO autoregressive
type and contains only two parameters, B(k) and b(k).

M

The controller aims at| minimizing: the loss due to. the
deviation of the output from the reference vector w as
well as the loss in energy needed to exert the control
effort u. This combined performance criterion is ex-
pressed as !®,

I(w)=E[vk+2)—w(k+2) |2+ | R u(k)|?] 8

where w(k+2)= vitk+2)+ C[yd(k)—y(k)]/T, and R, C
are positive definite weighting matrices, and vd, yd
describe the desired velocity and position vector of the
hand. The control, minimizing (8), is,
ua(k)=[BT(k)B(k)+RTR]*! BT(k)
fw(k+2)—v(k)—B(k)u(k—1)—2b(k)] £)]
This control law can handle time-varing reference
signals as well as certain nonminimum-phase system.
The direct use of (9) is difficult because the calcula-
tion of the model parameters is a tedious task and it
depends on the payload which is often unknown. Us-
ing the principle of STC'", the model parameters are
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estimated by recursive identification algorithm, and
the estimated parameters are used in optimal control
law of (9).

Equation(7) can be rewritten as follows :
vik+D=v(k)+ X"(k)8(k) +e(k+1) (10)
where X(k}=[u"(k—1), 1], and 8(k)=[B(k), b(k)]*
The recursive least-squares algorithm is
given as,
G(k+1)= (k) + L) [v(k+ 1) —v(k) —X (k) (k)]
(11)
L(k)=P(k)X(k)/[s + X" (k)P(k)X (k)]
Pk+1)=[P(k) - L)X " (k)P(k)]/s

where the caret refers to estimated values, s is a
forgetting factor for exponential decaying of past data
in tracking a slow drift in the parameters within the
range between 0.9<s<1., and P is a (n+1) by (n+1)
matrix for updating the parameters. Computationally
it is more advantageous to use the square-root
algorithm, making it possible for the positive definite
P-matrix to lose this property.

The estimated parameters are then employed to
determine the optimal feedback gain and control force
of (9). These control forces can be resolved into ap-
plied joint torques, as shown by (5-b):

r(k+1)=J"(q)ulk)

The overall block diagram of the contro] system is
shown in Fig. 1, where the hand position is
represented by the homogeneous transformation
matrix H, and Jacobian play a role in interfacing be-
tween joint coordinate system and hand coordinate
system.

-In order to restrict the complexity of the
multivariable model of (7), the model variables may be
decomposed into two groups with the assumption that
the coupling effects of the force and moment vectors

a Position and H
H Orientation
Error Program

Joint-to-

Hand Matrix
Program
£ T
J'I‘

Cartesian
Y q

vd Coordinate
Self-Tuner g

e

Manipulator

v

Fig. 1. Block diagram of cartesian coordinate control.



of (4-b) on the linear and angular velocities of (4-a) are
negligible. Thus, the 6 by 6 matrix B(k) in (7) is decom-
posed into two 3 by 3 matrices by which two 3-dim
self-tuners are determined for each groups. Also, if in-
teractions between the hybrid variable sets are small
in cartesian coordinates, coupling terms in the model
of (7) are removed, thus, six scalar self-tuners are
designed for each degree of freedom of robot hand.

3. Scalar Self-Tuner

The multivariable auntoregressive model of (7) can be
decoupled by the assumption that the coupling effects
of forces on the velocities of (4) are negligible. Conse-
quently, the decoupled system can be considered to
consist of a set of independent single-variable system
with first-order SISO model, as follows:

vitk+1)=wvi(k)+ Bu(k—1)+b +e(k+1) (12)

wherei=1, 2, ..., 6, and bj contains all unmodeled ef-
fects which are related to linear approximation and
coupled interactions, as well as gravity, coriolis and
centrifugal forces,

The performance criterion is chosen in the following
form:

L) =E[(vi(k+2) —wi(k+2))*+ (R (k))?]
where wi(k+2)=v{(k+2)+C[¥f(k)—¥:(k)]/T
The optimal control law becomes,

w(k)=B/(Bf + R?)*

[wi(k+2) —v;(k) — Bu(k— 1) — 2by]

(13)

(14)

Equations (11) can be programed for on-line com-
putations of the parameter estimation, and(14) for the
on-line computation of the controls.

Note that the number of scalar self-tuners equals
the number of degree of freedom in cartesian coor-
dinates, and each self-tuner requires to identify only
two parameters.

Computer simulation is carried out to demonstrate
its applicability.

4. Computer Simulation
Each of the proposed control schemes, 6-dim self-

tuner, 3-dim self-tuner, and scalar self-tuner, were ap-
plied to the dynamic simulation model of the JPL—
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Stanford Arm with six degree of freedom!2’.

Dynamic equation is solved by using the recursive
Newton-Euler algorithm'® and the 4-th order Runge-
Kutta integration method.

A hypothetical problem® in which the Stanford
manipulator picks up an object on a conveyor with a
known velocity of 156 Cm/s, and then places it on table,
as illustrated in Fig. 2, was simulated on PDP 11/44
computer. In the figure, sl, i=1,2,...,8, is the i-th
corner point of the traveling path of the manipulator
hand, and it consists of first three components for the
location and second three components for the orienta-
tion in terms of Euler angle. The kinematic relation
between Euler angle and hand orientation refers to
Appendix. The input data for s! are specified in Tablel.

Fig. 2. An Example of simulation (0.5 see/motion).

First, for analytic simplicity, a simple motion is
tested to move the hand from point s# to s5 and to s
along straight lines in 10 sec. The preplanned position
and velocity trajectory is illustated in Fig. 3. The
simulation result for the system with the adaptive con-
trol scheme, 6-dim self-tuner, 3-dim self-tuner, and
scalar self-tuner, respectively, is shown in Fig. 4, and
computed values and estimated values of model
parameter at s% are represented in Table 2. Also the

Table 1. Input data for a simulation problem.

s! g2 | &% | gt | & g | g7 | g®
px(Cm)| 0 20, 30| 40| 40 0{—15|—15
py(Cm) | —40| —40| —20 5/ 65| 40| 30| 30
pz(Cm)| 30| 30, 20 4 4 4| 156 5
a (deg) 0, 45| 90| 180 180 225| 225 225
B (deg)| 135] 135 135,150 | 150| 135| 180| 180
7 (deg) 0 0 0 0 0 0 0 0
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Table 2. The Computed value and estimated value of model parameters at s4.

...15_

B b
1.29E-3 —3.07E-4 1.12E-4 2.26E-4 1.13E-3 8.31E-4 —9.82E-3
—3.07E-4 3.94E-4 ~1.87E-5 —3.04E-4 —3.11E-4 5.37E-4 2.19E-3
Computed 1.12E-4 —1.87E-5 2.71E-4 —2.53E-4 —4.70E-4 1.21E-4 1.76E-3
Value 2.26E~4 —3.04E~-4 —2.53E-4 7.46E-2 —6.07E-3 1.53E-2 —4.29E-2
1.13E-3 —3.11E-4 —4.70E-4 —6.07E-3 1.92E-1 —1.79E-1 —1.13E-2
8.31E-4 5.37E-4 1.21E—4 1.53E-2 —1.79E-1 3.90E-1 —1.49E-2
1.30E-3 —2.65E-4 1.25E-4 9.80E-4 —4.98E-3 9.63E-3 —1.02E-2
6-dim —3.10E-4 3.71E-4 —3.00E-56 —1.06E~3 3.567E-3 —4.73E-3 2.53E-3
Self- 1.16E-4 —3.33E-5 2.68E-4 —2.67TE—4 1.98E-3 —3.82E--3 1.72E-3
Tuner 2,22E-4 —2.53E-4 —2.23E-4 7.61E-2 —1.65E-2 3.01E-2 —4.31E-2
i 1.15E-3 —2.54E~4 —4.43E~4 —4.25E-3 1.83E~1 —1.69E-1 —1.21E-2
7.93E-4 5.61E-4 1.26E-4 1.44E-2 —1.85E-1 4.03E-1 —1.43E-2
9.77E-4 —2.05E-4 3.37E-5 0. 0. 0. —7.84E-3
3-dim —2.58E-4 3.60E-4 —4.18E-6 0. 0. 0. 1.79E-3
Self- 1.78E-4 —4,26E-5 2.80E-4 0. 0. 0. 1.18E-3
Tuner 0. 0. 0. 6.57TE-2 4.99E-3 —1.62E-3 —3.41E-3
0. 0. 0. —4.94E-3 1.87E-1 —1.72E~1 1.85E-3
0. 0. 0. 1.33E-2 —1.72E-1 3.73E-1 —17.26E-3
1.19E-3 0. 0. 0. 0. 0 —1.02E-2
Sealar 0 3.65E-4 0. 0. 0. 0 —3.89E~-4
Self- 0 0. 2.55E-4 0. 0. 0 2.43E-3
Tuner 0. 0. 0. 7.32E-2 0. 0 —3.79E-2
0. 0. 0. 0. 1.39E-1 0. —1.15E-3
0 0. 0. 0. 0. 2.55E-1 —1.23E-3
8.B-1[ 7T T T requires a large amount of computing and knowledges
P of precise dynamic parameters. In using the simplified
P e \'\-.\_Py.(m) inverse-dynamics '3’; which is obtained from ignoring
: ol e velocity terms and coupling terms, the response of the
0.E00L=="". B SRAMC (Simplified RAMC) is biased as shown Fig. 5.
. e — The JCSS, using the joint coordinate model of (3) and
vy(m/s) neglecting all coupling effects, has similar response to
_ the CCSS, whose response oscillates while trying to
-8.B-1{ o follow the desired value and then settles down to the
0 Time (sec) “1o. extend of comparing with the RAMC, but it requires

Fig. 3. Preplanned trajectory of py and vy.

CCSS (Cartesian Coordinate Scalar Self-tuner) was
compared with the other cartesian coordinate control,
including the RAMC (Resolved Acceleration Motion
Control) ¥, and the JCSS (Joint Coordinate Scalar
Self-tuner)®. The resulting errors between the
preplanned trajectory and real motion are illustrated
in Fig. 5, and the necessary algorithms are summuriz-
ed in Table 3. The RAMC has the smooth motion pro-
perty. However, the computation of inverse-dynamics

slightly more computational burden than the CCSS.

Next, the scalar self-tuner was applied to the com-
plete task of Fig. 2, and its maximum error and error
variance are shown in Table 4.

Table 3. The Necessary algorithm for each of controls

Inverse-Dynamics,
RAMC Inverse-Kinematics, Inverse-Jacobian
Simplified Inverse-Dynamics,
SRAMC Inverse-Kinematics, Inverse-Jacobian
JCSS Inverse-Kinematics, Inverse-Jacobian
CCSS Kinematics, Jacobian
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Fig. 4. Error responses of py. Fig. 5. Error responses of py.
Table 4. The Response errors of scalar self-tuner
Coordinate Maximum Maximum Position Velocity Final Final
Variable Position Velocity Error Error Position Velocity
anaples Error Error Variance Variance Error Error
Position x 0.6473 8.3970 0.1897 1.4550 —0.0235 0.0005
(mm) vy 1.1740 24.7000 0.3130 2.9980 0.3979 —0.0341
z 0.9152 12.1000 0.2335 1.6800 —0.0965 0.0108
Orien- x 0.4236 7.1734 0.1063 0.9534 0.0003 —0.0027
tation y 0.2685 11.2987 0.0789 1.2193 —0.0043 —0.0005
(deg) =z 0.2329 11.6941 0.0394 1.5476 L 0.0000 0.0021
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The simulation result shows that the scalar self-
tuner is well applicable to the control of robot hand in
cartesian coordinates, and its operation is comparable
to the performance of the systems, based on
multivariable models with coupling term, and using
the RAMC or the JCSS.

The main advantage of scalar self-tuner is its
simplicity, and its adaptability to unmodeled effect
and undesired disturbance by adjusting control
parameters to compensate directly for the error in
cartesian coordinates. The controller can be im-
plemented using mieroprocessors.

5. Conclusion

An effective cartesian coordinate model and an
adaptive controller of self-tuning type, presented in
this paper, is for the closed-loop control of the hand of
the manipulator along prescribed trajectory in carte-
sian coordinates. .

The nonlinear dynamic model for velocity and force
of hand are decomposed into six first-order SISO
models assuming that tne coupling effects between the
hybrid variable sets are negligible. All the unmodeled
effects, resulting from this simplication, are compen-
sated by a bias term which is estimated by recursive
least-squares algorithm, based on the fact that it is us-
ed with optimal sense in linearization of nonlinear
system, reduction of model’s order, and decoupling of
multivariable model.

The algorithm of the scalar self-tuner using these
models is very simple, and numerical examples
demonstrate, that it is comparable to the performance
of the systems, based on multivariable model with
coupling terms, and using the other cartesian coor-
dinate control. The proposed method can be shown to
have significant advantages over the other cartesian
coordinate controls.
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Appendix

The Kinematic Relation Between Euler Angle and
Hand Orientation.
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Orientation of robot hand is represented by 3-by-3
rotation matrix, Euler coordinates, or RPY coor-
dinate, ete. Since the joint structure of Stanford
manipulator for hand orientation is similar to the
structure of Euler transformation, the Euler angle is
frequently used to specify hand orientation. When the
set of Euler angle is ¢, 8, and 7, the rotation matrix is
as illustrated in [5];

R=Rot(z, @) Rot(x, 3) Rot(z, 7)
ca —sa 0 10 0 cy —sy O
z{sa ca 0} [0 ¢l —sﬂ} [sy cy 0}
o 0 1 0 sB8 ¢f 0 01
cacy —sacfsy —casy —sacfcy sasf
:[sac7+cacﬂs7 —sasy —cacfey —casﬁ}

sfsy sdey ch
=[mn, o, a]

where n, 0 and a are unit vectors of hand coordinate
frame as Fig. A-1. Its inverse relation, based on [14’
is derived as,

Fig. A-1. n, o, and a vectors.

a=atan2(ay, —ay)

and ¢=a+180
B=atan2(axs@ —aycw, az)
y=atan2(— oxca — oysa, nxca+nysa)

The orientation error between the desired hand
coordinates and the real hand coordinates and be
specified by the generalized orientation vector.

Rd=Rot (k, 6) R
where Rd is desired hand rotation matrix, R is real
hand rotation matrix, and k is unit generalized orien-
tation error vector with respect to the reference coor-
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dinate frame as Fig. A-2. The computation of k and 6
refers to [14]. The generalized orientation error e is
defined by,
e= 0k
The relation between angular velocity and Euler
angle can be derived from the equation [14):

S AR

where A is the differential rotation transformation of
the hand. Since the inverse of a rotation matrix is
equivalent to its transpose, the angular velocity of the
hand coordinate frame abut the principal axes of the
reference frame is obtained as following;

Fig. A-2. Generalized orientation error vector.

0 —w, Wy

4= dftiR R' { w, 0 —uw
-ty Wy 0
0 —acfy saf—casfy
atefy 0 ~caf— safsﬂy;}
safteasfy caBtsasfy O

From the above equation, the relation between
the(wx, @y, w,) and (¢, B, ¥) can be found by
equating the non-zero elements in the matrices ;
r Wx 0 ca sasfq ra
(I)y‘l— [0 sa '-casﬁ] [[)’)

- we 10 ety

and its inverse relation can be found easily ;
-

—sacf cacB sBq rwx
B]—sec,@ casf sasf O} {wy}
vy sa —ca O wz




