• Title/Summary/Keyword: Carbon-fluorine

Search Result 107, Processing Time 0.022 seconds

Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor (고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리)

  • Jung, Min-Jung;Ko, Yoonyoung;Kim, Kyung Hoon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.638-644
    • /
    • 2017
  • Pitch based activated carbon fibers for electric double layer capacitor (EDLC) electrodes were treated by oxyfluorination via varying the ratio of fluorine and oxygen gases to improve high power property. As the partial pressure of fluorine increased, the oxyfluorinated activated carbon fibers showed an increase of linear fluorine functional groups. While the oxygen functional groups increased, no changes was observed with respect to the partial gas pressure. The specific surface area and pore volume decreased due to the etching reaction on the activated carbon fiber surface through oxyfluorination, but the mesopore volume increased about 4.5 times. In the case of activated carbon fibers treated with 50% of the fluorine gas partial pressure, the specific capacitance increased to about 29% and 61% at scan rates of 5 and 50 mV/s, respectively. The improvement of the specific capacitance was believed to be due to the introduction of oxygen and fluorine functional groups on the activated carbon fiber surface and the increase of mesopores through oxyfluorination.

Improved flame retardant performance of cellulose fibers following fluorine gas treatment

  • Kim, Jong Gu;Lee, Young-Seak;In, Se Jin
    • Carbon letters
    • /
    • v.28
    • /
    • pp.66-71
    • /
    • 2018
  • To improve the flame retardant performance of cellulose fibers, fluorine functional groups were introduced under various controlled fluorination conditions. The properties of the fluorinated cellulose fibers were analyzed by X-ray photoelectron spectroscopy and a thermogravimetric analysis. The fluorine functional group content in the fluorinated cellulose fibers increased with an increase in the fluorination temperature. However, the fluorination reaction increased the char yield and decreased the rate of degradation of the cellulose fibers by introducing donors, enabling the formation of a thick and compact char layer. Therefore, the flame retardant properties of cellulose fibers were improved following the fluorination treatment.

Influence of Oxyfluorination on Properties of Polyacrylonitrile (PAN)- Based Carbon Fibers

  • Lim, In-Seub;Yoo, Seung-Hwa;Park, Il-Nam;Lee, Young-Seak
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this study, the oxyfluorination of PAN-based carbon fibers was undertaken at room temperature using fluorine-oxygen mixtures, and the influence of oxyfluorination on properties was investigated. The surface characteristics of the modified fiber were determined by using X-ray photoelectron spectroscopy (XPS) and dynamic contact angle analyzer. The oxyfluorination of carbon fibers was one of the more effective methods to increase surface wettability by the formation of semicovalent C-F bond and C-O bond depending on reaction conditions. When oxygen mole fraction is increased from 0.5 to 0.9, it is probable that attached fluorine atoms at the surface of the fibers reacted with other components. As increased oxyfluorination time and decreased its pressures, semi-covalent peak is increased at 0.5 of oxygen mole fraction. The total surface free energy of oxyfluorinated carbon fibers decreased with increasing oxygen mole fraction over 0.5. These results indicate that the surface of carbon fibers became much more hydrophilic after the short oxyfluorination. The surface free energy of oxyfluorinated carbon fibers progressively decreased after 10 min treatment. The polar components of surface free energies were however, significantly higher for all oxyfluorinated samples than that for the untreated carbon fiber.

  • PDF

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Effect of Fluorination on Electrical Behaviors of Carbon Blacks-filled HDPE Polymeric Switch

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1337-1340
    • /
    • 2009
  • Electrical properties of a fluorinated carbon black (CB)-filled high-density polyethylene (HDPE) polymeric switch were investigated as a function of fluorination pressure at 0.1 ~ 0.4 MPa. From the FT-IR results, the absorption spectra of the fluorinated CB show an absorption band at 1400 ~ 1000 $cm^{-1}\;for\;{\nu}_{C-F}$ and the peak intensity increased with increasing fluorination pressure. Also, the analysis of XPS spectra of the fluorinated CB indicated that fluorine content increased with increasing fluorination pressure. Meanwhile, the surface free energy of the fluorinated CB decreased with increasing fluorination pressure. Consequently, the increase of fluorine contents of CB made a disappearance of negative temperature coefficient (NTC) behavior of the polymeric switch, which was probably due to the reduction of CB reaggregation after melting point of the HDPE, resulted from the decreasing of London dispersive component of the surface free energy for CB particles.

The Effect of Fluorination on Wettability between Cokes and Binder Pitch for Carbon Block with High Density (고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향)

  • Kim, Kyung Hoon;An, Donghae;Kim, Ji Wook;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.677-681
    • /
    • 2018
  • In this study, the carbon block was prepared using the fluorinated coke and binder pitch by molding compression to increase its density. After fluorination, it is confirmed that the fluorine element on the coke surface was introduced up to 24.14 at% using XPS analysis. The wettability between the fluorinated coke and binder pitch was evaluated according to the reaction temperature. From the result of contact-angle tests, it can be found that the wettability was improved up to 64.7% as more fluorine atoms were introduced on the surface of cokes. Also, the density of the carbon block with the highest amount of fluorine increased with 6.8% compared to that of using the carbon block prepared by the untreated cokes.

Surface Modification of F-MgO by High Energy Electron-beam (높은 에너지의 전자빔을 이용한 F-MgO의 표면 개질)

  • Kim, Kwang-Dae;Tai, Wei Sheng;Luo, Yuan;Seo, Hyun Ook;Lee, Byung Cheol;Yang, Ki Ho;Park, Ok Kyung;Kim, Young Dok
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • The variation of MgO surfaces, in which fluorine was contained (F-MgO), by high energy electron-beam (EB) was studied using X-ray photoelectron spectroscopy (XPS). Fluorine on the MgO surface was eliminated by EB treatment with the consequence that the electronic structures of Mg, O and C were varied. Moreover, as a result of oxidation of carbon species on the surface by high dose EB treatment (90 kGy), the concentration of carbonate and carboxyl species on the surface was increased. In this experiment, it was confirmed that the structure of oxidized metal surface can be adjusted by varying conditions of EB treatment (energy and dose). This result implies that EB can be applied for developing new catalysts.

Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination (아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성)

  • Lim, Jae Won;Jeong, Euigyung;Jung, Min Jung;Lee, Sang Ick;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.