Browse > Article
http://dx.doi.org/10.5714/CL.2018.26.112

Preparation of fluorinated graphite with high fluorine content and high crystallinity  

Jung, Min-Jung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Yu, Hye-Ryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Carbon letters / v.26, no., 2018 , pp. 112-116 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Watanabe N, Shibuya A. Reaction of fuorine and carbons, and properties of their compounds. Kogyo Kagaku Zasshi, 71, 963 (1968). https://doi.org/10.1246/nikkashi1898.71.7_963.   DOI
2 Takashima M, Watanabe N. Formation and structure of crystalline graphite fuoride. Nippon Kagaku Kaishi, 3, 432 (1975).
3 Watanabe N, Koyama S, Imoto H. Thermal decomposition of graphite fuoride. I. Decomposition products of graphite fuoride, (CF)n in a vacuum. Bull Chem Soc Jpn, 53, 2731 (1980). https://doi.org/10.1246/bcsj.53.2731.   DOI
4 Watanabe N, Koyama S. Thermal decomposition of graphite fuo- ride. II. Kinetics of thermal decomposition of (CF)n in a vacuum. Bull Chem Soc Jpn, 53, 3093 (1980). https://doi.org/10.1246/ bcsj.53.3093.   DOI
5 Watanabe N, Kawamura T, Koyama S. Thermal decomposition of graphite fuoride. III. thermal decomposition of (CF)n in oxy- gen atmosphere. Bull Chem Soc Jpn, 53, 3100 (1980). https://doi.org/10.1246/bcsj.53.3100.   DOI
6 Hamwi A, Daoud M, Cousseins JC. Graphite fuoride prepared at room temperature: 1. Synthesis and characterization. Synth Met, 26, 89 (1988). https://doi.org/10.1016/0379-6779(88)90338-4.   DOI
7 Sato Y, Hagiwara R, Ito Y. Thermal decomposition of 1st stage fuorine-graphite intercalation compounds. J Fluorine Chem, 110, 31 (2001). https://doi.org/10.1016/S0022-1139(01)00397-9.   DOI
8 Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison. Carbon Lett, 17, 39 (2016). https://doi.org/10.5714/CL.2016.17.1.039.   DOI
9 Hamwi A. Fluorine reactivity with graphite and fullerenes: fuo- ride derivatives and some practical electrochemical applications. J Phys Chem Solids, 57, 677 (1996). https://doi.org/10.1016/0022-3697(95)00332-0.   DOI
10 Mar M, Ahmad Y, Guerin K, Dubois M, Batisse N. Fluorinated exfoliated graphite as cathode materials for enhanced performances in primary lithium battery. Electrochim Acta, 227, 18 (2017). https://doi.org/10.1016/j.electacta.2016.12.137.   DOI
11 Groult H, Nakajima T, Perrigaud L, Ohzawa Y, Yashiro H, Komaba S, Kumagai N. Surface-fuorinated graphite anode materials for Li-ion batteries. J Fluorine Chem, 126, 1111 (2005). https://doi.org/10.1016/j.jfuchem.2005.03.014.   DOI
12 Gupta V, Nakajima T, Ohzawa Y, Zemva B. A study on the formation mechanism of graphite fuorides by Raman spectroscopy. J Fluorine Chem, 120, 143 (2003). https://doi.org/10.1016/S0022-1139(02)00323-8.   DOI
13 Kita Y, Watanabe N, Fujii Y. Chemical composition and crystal structure of graphite fuoride. J Am Chem Soc, 101, 3832 (1979). https://doi.org/10.1021/ja00508a020.   DOI
14 Delabarre C, Guerin K, Dubois M, Giraudet J, Fawal Z, Hamwi A. Highly fuorinated graphite prepared from graphite fuoride formed using BF3 catalyst. J Fluorine Chem, 126, 1078 (2005). https://doi.org/10.1016/j.jfuchem.2005.03.019.   DOI
15 Girgis BS, Temerk YM, Gadelrab MM, Abdullah ID. X-ray dif- fraction patterns of activated carbons prepared under various conditions. Carbon Lett, 8, 95 (2007). https://doi.org/10.5714/ cl.2007.8.2.095.   DOI
16 Rozen S, Brand M. Direct addition of elemental fuorine to dou- ble bonds. J Org Chem, 51, 3607 (1986). https://doi.org/10.1021/ jo00369a011.   DOI
17 Miller WT Jr, Koch SD Jr, McLafferty FW. The mechanism of fuorination. II. Free radical initiation reactions: fuorine-sensitized chlorination and oxidation. J Am Chem Soc, 78, 4992 (1956). https://doi.org/10.1021/ja01600a050.   DOI
18 Jeong E, Jung MJ, Lee SG, Kim HG, Lee YS. Role of surface fuorine in improving the electrochemical properties of Fe/MW- CNT electrodes. J Ind Eng Chem, 43, 78 (2016). https://doi.org/10.1016/j.jiec.2016.07.050.   DOI
19 Park MS, Kim KH, Lee YS. Fluorination of single-walled carbon nanotube: the effects of fuorine on structural and electrical properties. J Ind Eng Chem, 37, 22 (2016). https://doi.org/10.1016/j.jiec.2016.03.024.   DOI
20 Nakajima T, Gupta V, Ohzawa Y, Groult H, Mazej Z, Zemva B. Infuence of cointercalated HF on the electrochemical behavior of highly fuorinated graphite. J Power Sources, 137, 80 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.042.   DOI
21 Wu Z, Li J, Timmer D, Lozano K, Bose S. Study of processing variables on the electrical resistivity of conductive adhesives. Int J Adhes Adhes, 29, 488 (2009). https://doi.org/10.1016/j.ijad-hadh.2008.10.003.   DOI
22 Kabtamu DM, Chen JY, Chang UC, Wang CH. Water-activated graphite felt as a high-performance electrode for vanadium re-dox fow batteries. J Power Sources, 341, 270 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.004.   DOI
23 Lee KM, Lee SE, Lee YS. Improved mechanical and electromag- netic interference shielding properties of epoxy composites through the introduction of oxyfuorinated multiwalled carbon nano-tubes. J Ind Eng Chem, 56, 435 (2017). https://doi.org/10.1016/j.jiec.2017.08.001.   DOI
24 Hany P, Yazami R, Hamwi A. Low-temperature carbon fuoride for high power density lithium primary batteries. J Power Sources, 68, 708 (1997). https://doi.org/10.1016/S0378-7753(97)02642-6.   DOI
25 Nakajima T. Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Applications, CRC Press, Boston (1991).