Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.4.405

Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination  

Lim, Jae Won (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Jeong, Euigyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Jung, Min Jung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Lee, Sang Ick (Carbon Materials Development Team, Value Creation Center, GS Caltex Corporation)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.4, 2011 , pp. 405-410 More about this Journal
Abstract
High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.
Keywords
electric double layer capacitance; activated carbon; aminofluorination; pore structure;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. K. Sun, E. H. Um, and C. T. Lee, Appl. Chem. Eng., 21, 11 (2010).
2 C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives Ind. Chem., 2, 16 (1999).
3 T. Weng and H. Teng, J. Electrochem. Soc., 148, 4 (2001).
4 K. Y. Kang, S. J. Hong, B. I. Lee, and J. S. Lee, Electrochem. Commun., 10, 1105 (2008).   DOI   ScienceOn
5 A. S. Arico, P. Bruce, J. M. Tarascon, and W. Van-Schalkwijk, Nature Mater., 4, 366 (2005).   DOI   ScienceOn
6 F. Beguin, K. Szostak, and G. Lota, Frackowiak Adv. Mater., 17, 2380 (2005).   DOI   ScienceOn
7 Y. J. Kim, Y. Abe, T. Yanagiura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, and M. S. Dresselhaus, Carbon, 45, 2116 (2007).   DOI   ScienceOn
8 M. K. Seo and S. J. Park, Curr. Appl. Phys., 10, 241 (2010).   DOI   ScienceOn
9 X. L. Chen, W. S. Li, C. L. Tan, W. Li, and Y. Z. Wu, J. Power Sources, 184, 668 (2008).   DOI   ScienceOn
10 K. Jurewicz, K. Babel, A. Ziolkowski, and H. Wachowska, J. Physics and Chem. Solids, 65, 269 (2004).   DOI   ScienceOn
11 D. W. Wang, F. Li, M. Liu, and H. M. Cheng, New Carbon Mater., 22, 307 (2007).   DOI   ScienceOn
12 J. I. Kim, I. J. Kim, and S. J. Park, J. Korean Chem. Soc., 54, 93 (2010).   DOI   ScienceOn
13 J. Chmiola, G. Yushin, R. Dash, and Y. Gogosti, J. Power Sources, 158, 765 (2006).   DOI   ScienceOn
14 S. J. Gregg and K. S. W. Sing, Adsorption Surface Area and Porosity, second ed., 195, Academy Press, London (1982).
15 T. W. Little and F. S. Ohuchi, Surf. Sci., 445, 235 (2000).   DOI   ScienceOn
16 J. S. Im, S. M. Yun, Y. C. Nho, P. H. Kang, H. K. Jin, and Y. S. Lee, Carbon Lett., 10, 314 (2009).   DOI   ScienceOn
17 J. S. Im, I. J. Park, S. J. In, T. J. Kim, and Y. S. Lee, J. Fluor. Chem., 130, 1111 (2009).   DOI   ScienceOn
18 H. Oda, A. Yamashita, S. Minoura, M. Okamoto, and T. Morimoto, J. Power Sources, 158, 1510 (2006).   DOI   ScienceOn
19 K. Yamamoto, Y. Koga, and S. Fujiwara, Jpn. J. Appl. Phys., 40, L123 (2001).   DOI   ScienceOn
20 I. S Lim, S. H. Yoo, I. N. Park, and Y. S. Lee, Carbon Letters, 5, 12 (2004).
21 E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007).   DOI   ScienceOn
22 E. Raymundo-Pinero, D. Cazorla-Amoros, and A. Linares-Solano, Carbon, 41, 1925 (2003).   DOI   ScienceOn
23 J. N. Kim, M. K. Choi, and R. Ryoo, Bull. Korean Chem. Soc., 29, 413 (2008).   DOI   ScienceOn
24 G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, and E. Frackowiak, Chem. Phys. Lett., 404, 53 (2005).   DOI   ScienceOn
25 J. M. Lee, S. J. Kim, J. W. Kim, P. H. Kang, Y. C. Nho, and Y. S. Lee, J. Ind. Eng. Chem., 15, 66 (2009).   DOI   ScienceOn
26 H. Touhara and F. Okino, Carbon, 38, 241 (2000).   DOI   ScienceOn
27 E. R. Thomas, H. J. Denisa, Z. Zhonghua, and G. Q. Lu, Electrochem. Commun., 10, 1594 (2008).   DOI   ScienceOn
28 M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, J. Electrochem. Soc., 148, A374 (2001).   DOI   ScienceOn
29 J. Giraudet, M. Dubois, K. Guerin, C. Delabarre, A. Hamwi, and F. Masin, J. Phys. Chem. B, 111, 14143 (2007).   DOI   ScienceOn