Browse > Article
http://dx.doi.org/10.5714/CL.2018.28.066

Improved flame retardant performance of cellulose fibers following fluorine gas treatment  

Kim, Jong Gu (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
In, Se Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
Publication Information
Carbon letters / v.28, no., 2018 , pp. 66-71 More about this Journal
Abstract
To improve the flame retardant performance of cellulose fibers, fluorine functional groups were introduced under various controlled fluorination conditions. The properties of the fluorinated cellulose fibers were analyzed by X-ray photoelectron spectroscopy and a thermogravimetric analysis. The fluorine functional group content in the fluorinated cellulose fibers increased with an increase in the fluorination temperature. However, the fluorination reaction increased the char yield and decreased the rate of degradation of the cellulose fibers by introducing donors, enabling the formation of a thick and compact char layer. Therefore, the flame retardant properties of cellulose fibers were improved following the fluorination treatment.
Keywords
fluorination; flame retardant; cellulose fiber; thermal degradation; integral procedure decomposition temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kandola BK, Horrocks AR, Price D, Coleman GV. Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Part C Polym Rev, 36, 721 (1996). https://doi.org/10.1080/15321799608014859.   DOI
2 Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. J Fluorine Chem, 132, 1127 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.046.   DOI
3 Jeong E, Lee BH, Doh SJ, Park IJ, Lee YS. Multifunctional surface modification of an aramid fabric via direct fluorination. J Fluorine Chem, 141, 69 (2012). https://doi.org/10.1016/j.jfluchem.2012.06.010.   DOI
4 Okazoe T. Development of the "PERFECT" direct fluorination method and its industrial applications. J Fluorine Chem, 174, 120 (2015). https://doi.org/10.1016/j.jfluchem.2014.09.020.   DOI
5 Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS. Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon, 49, 2235 (2011). https://doi.org/10.1016/j.carbon.2011.01.054.   DOI
6 Crassous I, Groult H, Lantelme F, Devilliers D, Tressaud A, Labrugère C, Dubois M, Belhomme C, Colisson A, Morel B. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations. J Fluorine Chem, 130, 1080 (2009). https://doi.org/10.1016/j.jfluchem.2009.07.022.   DOI
7 Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS. A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J Ind Eng Chem, 15, 66 (2009). https://doi.org/10.1016/j.jiec.2008.08.010.   DOI
8 Peyroux J, Dubois M, Tomasella E, Petit E, Flahaut D. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma). Appl Surf Sci, 315, 426 (2014). https://doi.org/10.1016/j.apsusc.2014.05.163.   DOI
9 Park MS, Kim KH, Lee YS. Fluorination of single-walled carbon nanotube: the effects of fluorine on structural and electrical properties. J Ind Eng Chem, 37, 22 (2016). https://doi.org/10.1016/j.jiec.2016.03.024.   DOI
10 Heinz H, Koerner H, Anderson KL, Vaia RA, Farmer BL. Force field for mica-Type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chem Mater, 17, 5658 (2005). https://doi.org/10.1021/cm0509328.   DOI
11 Gronli MG, Varhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res, 41, 4201 (2002). https://doi.org/10.1021/ie0201157.   DOI
12 Nam S, Condon BD, Parikh DV, Zhao Q, Cintron MS, Madison C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stab, 96, 2010 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.08.014.   DOI
13 Sponton M, Ronda JC, Galia M, Cadiz V. Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl) methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polym Degrad Stab, 93, 2158 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.08.004.   DOI
14 Xu A, Zhang Y, Lu W, Yao K, Xu H. Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids. J Mol Liq, 197, 211 (2014). https://doi.org/10.1016/j.molliq.2014.05.018.   DOI
15 Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5, 1671 (2004). https://doi.org/10.1021/bm034519+.   DOI
16 Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS. Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett, 135, 226 (2014). https://doi.org/10.1016/j.matlet.2014.07.131.   DOI
17 Kuzmenko V, Naboka O, Gatenholm P, Enoksson P. Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon, 67, 694 (2014). https://doi.org/10.1016/j.carbon.2013.10.061.   DOI
18 Statheropoulos M, Kyriakou SA. Quantitative thermogravimetric-mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis. Anal Chim Acta, 409, 203 (2000). https://doi.org/10.1016/s0003-2670(99)00859-4.   DOI
19 Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 44, 3358 (2005). https://doi.org/10.1002/anie.200460587.   DOI
20 Chun SJ, Lee SY, Doh GH, Lee S, Kim JH. Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem, 17, 521 (2011). https://doi.org/10.1016/j.jiec.2010.10.022.   DOI
21 Loubinoux D, Chaunis S. An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Tex Res J, 57, 61 (1987). https://doi.org/10.1177/004051758705700201.   DOI
22 Qi X, Guo H, Li L, Smith RL Jr. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem, 5, 2215 (2012). https://doi.org/10.1002/cssc.201200363.   DOI
23 Sekiguchi Y, Shafizadeh F. The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J Appl Polym Sci, 29, 1267 (1984). https://doi.org/10.1002/app.1984.070290421.   DOI
24 Tang MM, Bacon R. Carbonization of cellulose fibers-I. Low temperature pyrolysis. Carbon, 2, 221 (1964). https://doi.org/10.1016/0008-6223(64)90035-1.   DOI
25 Wu QL, Gu SY, Gong JH, Pan D. SEM/STM studies on the surface structure of a novel carbon fiber from lyocell. Synth Met, 156, 792 (2006). https://doi.org/10.1016/j.synthmet.2006.04.007.   DOI
26 Kandola BK, Horrocks AR. Complex char formation in flame-retarded fibre-intumescent combinations-II. Thermal analytical studies. Polym Degrad Stab, 54, 289 (1996). https://doi.org/10.1016/s0141-3910(96)00054-7.   DOI