• 제목/요약/키워드: Carbon-fiber

검색결과 2,810건 처리시간 0.029초

Acetosolve Lignin으로부터 Carbon Fiber의 제조 (Preperation of Carbon Fiber from Acetosolve Lignin)

  • 엄태진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권2호
    • /
    • pp.21-26
    • /
    • 1997
  • Lignin viscous material was prepared from acetosolve lignin by phenolation and heat treatment. The yield of phenolation was about 160% with p-toluene sulfonic acid(2% of acetosolve lignin) as catalyzer. Phenolated lignin has a good spinnability and thermosetting property by $300^{\circ}C$ treatment with vaccum. Acetosolve lignin carbon fiber has $20{\pm}5$ m diameter and $68.2{\pm}10\;kg/mm^2$ tensile strength. The yield of carbon fiber based on acetosolve lignin was 31%.

  • PDF

탄소섬유쉬트의 재료 역학적 특성에 관한 연구 (Study on the mechanical Properties of Carbon Fiber Sheet)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.803-808
    • /
    • 1998
  • As carbon fiber is a light-weight materials, high tensile strength and durability compared with rebar, the retrofitting method for RC structures using carbon fiber sheet (CFS) must be use widely. In this paper, the tensile strength test for carbon fiber sheet variable of CF's weight and elastic modulus to evaluate the design tensile strength of carbon fiber sheet which is needed for the strengthening design of CFS and the calculation of strengthening effect. As a result, the design tensile strength of CFS can be calculate using the effect coefficient of strengthening(α) of CFS, the average tensile strength of CFS and the standard deviation of CFS(equation 5)

  • PDF

탄소섬유의 용단전류 및 차폐 케이블의 과전류 특성 (The Characteristics of the Over-current of Shielded Cable and the Fusing Current of Carbon Fiber)

  • 김영석;김택희;김종민;송길목
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1761-1766
    • /
    • 2016
  • In this paper, we investigated the fusing current of carbon fiber and thermal properties of carbon fiber and metal shielded cable due to over-current. The fusing current value for the metal-coated carbon fiber was 5.3A in 3K, 7.4K and 13.05A in 12K. And if it exceeds 50% of the fusing current was broken with a rapid voltage rise. In the case of carbon fiber shielded cable, the temperature of the PVC sheath increased somewhat in the allowable current range. However, the temperature of PVC sheath rapidly increased to $128.1^{\circ}C$ in the 2 time allowable current range. This value is $10^{\circ}C$ higher than the temperature of PVC sheath on the metal screen cable, because the resistance of the carbon fiber is high and heat transfer rate is slow.

Mechanical Properties of C-type Mesophase Pitch-based Carbon Fibers

  • Ryu, Seung-Kon;Rhee, Bo-Sung;Yang, Xiao Ping;Lu, Yafei
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.165-169
    • /
    • 2001
  • The C-type mesophase pitch-based carbon fiber (C-MPCF) was prepared throuch C-type spinnerette and compared the mechanical properties to those of round type mesophase pitch fiber (R-MPCF) and C-type isotropic pitch fiber (C-iPCF). The tensile strength and modulus of C-MPCF were about 18.6% and 35.7% higher than those of R-MPCF. The tensile strength of C-MPCF was 62% higher than that of C-iPCF of the same $8{\mu}m$ thickness because of more linear transverse texture, which could be easily converted to graphitic crystallinity during heat treatment. The torsional rigidity of C-MPCF was 2.37 times higher than that of R-MPCF. The electrical resistivity of C-MPCF was $8{\mu}{\Omega}{\cdot}m$. The C-iPCF shows far lower electrical resistivity than R-iPCF as well as the mesophase carbon fiber because of better alignment of texture to the fiber axis.

  • PDF

전도성 재료를 사용한 도로결빙방지 포장시스템 개발을 위한 기초연구 (Fundamental Study of Deicing Pavement System Using Conductive Materials)

  • 이강휘;이재준
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this study is to develop a deicing pavement system using carbon fiber or graphite with high electrical conductivity and thermal conductivity. METHODS: Based on literature reviews, in general, conventional concrete does not exhibit electrical and thermal conductivity. In order to achieve a new physical property, experiments were conducted by adding graphite and carbon fiber to a mortar specimen. RESULTS: The result of the laboratory experiment indicates that the addition of graphite can significantly reduce the compressive strength and improve the thermal conductivity of concrete. In the case of carbon fiber, however, the compressive strength of the concrete is slightly increased, whereas, the thermal conductivity is slightly decreased against the plain mortar irrespective of the length of the carbon fiber. In addition, a mixture of the graphite and carbon fiber can greatly improve the degree of heating test. CONCLUSIONS : Various properties of cement mortar change with the use of carbon fiber or graphite. To enhance the conductivity of concrete for deicing during winter, both carbon fiber and graphite are required to be used simultaneously.

탄소섬유 복합여과재의 제조 및 물성연구 (A Study on the Preparation and Characterization of Carbon Fiber Composite Filter)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계 (Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber)

  • 김건회
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

탄소섬유시트로 보강한 RC보의 단부 정착유무에 따른 휨성능 평가 (Evaluation of Flexural Performance of Reinforced Concrete Beams Strengthened by Carbon Fiber Sheet Considering End Anchorage Effect)

  • 이창현;어석홍
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1165-1171
    • /
    • 2022
  • In this paper, the results of an experimental study were presented by measuring and comparing the flexural strength and deformation on the carbon fiber sheet strength reinforced concrete beam considering end anchorage effect. For this purpose, total six specimens of 100×100×600mm size were prepared and tested according to the KDS 14 20 20. The specimens were categorized in three cases as reference beams without strengthening, beams carbon fiber strengthened but not anchored and beams carbon fiber strengthened also anchored. Experimental results showed that the end anchorage contributed to increase the flexural strength about 42% greater than that of carbon fiber sheets alone, and the number and width of cracks were relatively increased. The results support a considerable effects of end anchorage for carbon fiber strengthened reinforced concrete beams in enhancing the flexural performance. Further studies are needed in durability and long term behavior of carbon fiber sheet strengthened reinforced concrete beams.

탄소나노튜브로 보강된 탄소섬유복합재의 제조 공정과 모드 1 파괴인성 (Processing and Mode 1 Fracture Toughness of Carbon Fiber Composites Reinforced With Carbon Nanotubes)

  • 김한상
    • Composites Research
    • /
    • 제24권5호
    • /
    • pp.39-43
    • /
    • 2011
  • 탄소나노튜브로 보강된 고분자 수지에 대한 연구는 지난 20년간 활발히 수행되어 왔다. 또한 이를 이용하여 탄소섬유복합재의 물성을 증대시키기 위한 연구도 최근 그 영역을 넓혀가고 있다. 탄소섬유복합재는 탄소섬유의 비약적인 발전으로 섬유 방향의 기계적 물성은 상당히 만족할 만한 수준에 도달했으나, 수지에 의해 좌우되는 기계적 물성은 아직 기대에 못미치고 있다. 특히, 층간의 분리 (delamination)는 탄소섬유복합재의 가장 전형적이며 치명적인 파손의 원인중 하나이다. 이 층간분리에 대한 저항성을 알아보는 모드 1 파괴인성 실험 (혹은 double cantilever beam, DCB test)을 다양한 작용기로 기능화된 SWNT가 첨가된 탄소섬유복합재 시편에 대하여 수행하였다. 부직포 형태의 탄소나노튜브층을 이용한 시편의 경우 10.6%의 파괴인성 증대를 보였다.

탄소섬유 보강시멘트 복합체(CFRC)의 공학적 특성에 관한 실험적 연구(I) (A Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites(I))

  • 박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.31-34
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies in the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, lengths, contents of carbon fiber and matrices, their properties of fresh and fardened CFRC were tested. According to the test results, the process technology of light-weight CFRC is developed and their potimum mix proportions are successfully proposed. Also, it can be concluded that the reinforcement of carbon fiber is considerably effective in improving tensile strenghth, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.

  • PDF