• 제목/요약/키워드: Carbon-coating

검색결과 799건 처리시간 0.026초

Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

  • Lee, DongHo;Park, JinHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.165-172
    • /
    • 2012
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments.

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

원통형 마그네트론 스퍼터링 장비의 방전특성과 박막구조에 관한 연구 (A Study on the Discharge Characteristics of Cylindrical Sputtering Apparatus and Microstructure)

  • 오창섭;한창석
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2012
  • The purpose of this study is to prepare a high strength fiberglass reinforced metal. Aluminum covering was carried out over carbon materials such as carbon fiber in order to increase their wettability to molten metals such as aluminum. A sputtering apparatus with a cylindrical target was fabricated to carry out the covering. Sputtering was caused by glow discharge between the target and the two anode plates attached to its top and bottom. As the substrate for preliminary test, a thin carbon wire was used instead of carbon fiber, and the wire was placed at the central axis of the target. Aluminium coating was formed on the whole surface of the substrate. The formation rate and structure of coating were varied by controlling the electrical potential of substrate. When the substrate was electrically isolated, coating with columnar structure was formed with a formation rate of $15{\mu}m/hr$. In case of grounded substrate, coating with amorphous structure was formed with a formation rate of $7{\mu}m/hr$.

침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성 (Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery)

  • 황진웅;이종대;임지선
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.514-519
    • /
    • 2020
  • 흑연 소재는 높은 구조적 안정성 및 낮은 가격으로 리튬 이차전지 음극소재로 이용되고 있다. 또한, 탄소 소재의 낮은 속도 특성을 개선하려는 탄소 코팅 연구가 활발히 진행되고 있다. 탄소 코팅은 화학적 반응을 이용하는 CVD 코팅, 용매를 사용하는 습식 코팅, 기계적 충돌에 의한 건식 코팅으로 나뉜다. 본 논문에서는 습식 코팅 공정에서 사용 용매에 따라 탄소 전구체(피치)의 일부만 사용될 수 있는 문제와 용매 제거에 의한 환경 문제를 해결하고자 건식 공정인 고속 분쇄/코팅 공정을 이용하여 리튬 이차전지 음극용 탄소 소재를 제조하였다. 침상 코크스와 피치의 무게비는 8 : 2 wt.%으로 하고, 고속 분쇄/코팅 공정을 이용하여 침상 코크스의 분쇄와 피치의 코팅을 통한 구상화를 진행하였을 때, 침상 코크스의 모서리 면이 피치로 코팅되는 것을 확인하였다. 이 소재를 2400 ℃ 고온 열처리를 진행한 결과 피치 코팅되지 않은 소재와 비교하여 초기용량과 효율은 큰 차이를 보이지 않았으나, 10C/0.1C 속도 특성에서 41.8%의 성능이 향상되었다. 고속 분쇄/코팅 공정을 통해 제조된 소재는 고속 방전용 리튬 이차전지 음극 소재에 사용될 수 있을 것으로 생각된다.

터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅 (HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower)

  • 주윤곤;윤재홍;조동율;천희곤
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

활성탄소 전극의 제조공정에 따른 EDLC의 전기화학적 특성 (Electrochemical Characteristics of EDLC Fabricated by Different Preparation Processes of Activated Carbon Electrode)

  • 양천모;김현중;조원일;조병원;윤경석;임병오
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.98-103
    • /
    • 2001
  • EDLC(electric double layer capacitor)용 활성탄소전극의 제조공정을 dip coating method, doctor blade coating method, paste rolling method로 달리하여 전기화학적 특성과 비축전 용량을 조사하였다. Dip coating method에 의한 전극제조시 전해질염으로 LiPF6를 이용하고 유기용매로 PC-DEC를 이용한 EDLC의 비축전 용량이 130F/g으로 가장 우수하였고, 선형의 시간전압곡선에서의 IR-drop도 0.11V로 작았으며 CV(cyclic voltammetry) 분석 또한 이상적인 EDLC의 특성을 나타내었다.

불화탄소 전극의 열분해 연료유 기반 탄소 코팅이 리튬일차전지의 고율속 성능에 미치는 영향 (Effect of Pyrolysis Fuel Oil Based Carbon Coating onto CFX Cathode on High-rate Performance of Lithium Primary Batteries)

  • 이상엽;하나은;명성재;임채훈;이세현;이영석
    • 공업화학
    • /
    • 제35권4호
    • /
    • pp.321-328
    • /
    • 2024
  • 불화탄소 기반 리튬일차전지(Li/CFX)의 활물질로 이용되는 불화탄소는 낮은 전도성에 기인한 열악한 율속 특성으로 방전 성능이 제한적이다. 따라서, 본 연구에서는 이를 극복하기 위하여 불화탄소에 열분해 연료유를 이용하여 탄소 코팅을 진행하였고, 전기화학적 성능을 고찰하였다. 탄소 코팅에 의하여 불화탄소 표면에 무정형 탄소층이 형성되었으며, 열처리 온도에 따른 불화탄소의 표면 물리화학적 특성을 면밀히 고찰하였다. 상용 불화탄소를 450 ℃에서 열처리한 ARC@C450 샘플은 sp2 탄소 결합의 함량이 62%로 가장 크게 증가하였으며, 반이온성 C-F 결합이 가장 많이 형성되었다. 또한, ARC@C450 샘플을 환원극 활물질로 이용한 일차전지는 가장 높은 5 C 율속(392 mAh/g)에서 안정적인 방전 특성을 보였으며, Rct 값은 미처리 시료에 비하여 53% 감소하였다. 따라서, 본 연구에서는 불화탄소의 낮은 전도성을 극복하기 위한 방법으로 열분해 연료유 기반 탄소 코팅을 제안하며, 탄소 코팅된 불화탄소는 우수한 율속 성능을 나타냄으로 고출력 일차전지로의 응용 가능성을 제시한다.

화학기상증착 코팅로의 용량에 따른 탄소 코팅 SiOx의 물리적 특성 변화 분석 (Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx)

  • 맹석주;곽우진;박헌수;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.441-447
    • /
    • 2022
  • Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.

탄소나노튜브 코팅의 마찰/마모 특성에 대한 나노메쉬 구조의 영향 (Effect of Nanomesh Structure Variation on the Friction and Wear Characteristics of Carbon Nanotube Coatings)

  • 김해진;김창래
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.315-319
    • /
    • 2020
  • In various fields, several studies based on carbon nanotubes (CNTs) have been conducted. The results of previous studies, wherein CNT coatings have been incorporated as solid lubricants, demonstrate that the friction and wear characteristics of CNT coatings can be improved through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure comprising CNT strands. In this study, the friction and wear characteristics of the following are compared: CNT coating formed by spin coating of CNT solution, compressed CNT coating, and compressed/heated CNT coating (wherein CNT strands are squeezed through compression and/or heating). It is observed that the friction coefficient of the CNT coating having the largest number of voids between the CNT strands is significantly lower than those of the compressed CNT coating and the compressed/heated CNT coating. The wear tracks of the compressed CNT coating and the compressed/heated CNT coating indicate that some parts become torn or adhere into a lump. However, in the case of the CNT coating, a smooth wear surface is formed by rubbing. Furthermore, as the void space between the squeezed and adhered CNT strands decreases, the resistance to structural deformation increases, thereby resulting in an increased frictional force and a wear pattern that becomes torn or forms a lump. Hence, the results obtained from this study corroborate that the friction and wear characteristics of CNT coatings can be enhanced through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure of CNT coatings.

반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도 (Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method)

  • 한창석;진성윤
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.