Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.6.441

Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx  

Maeng, Seokju (Department of Chemistry and Chemical Engineering, Inha University)
Kwak, Woojin (Department of Chemistry and Chemical Engineering, Inha University)
Park, Heonsoo (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.6, 2022 , pp. 441-447 More about this Journal
Abstract
Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.
Keywords
Silicon suboxide; Carbon coating; Chemical vapor deposition (CVD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Zhou, Y. Liu, Y. Ren, T. Mu, X. Yin, C. Du, H. Huo, X. Cheng, P. Zuo, G. Yin, Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries, Adv. Funct. Mater., 31 (2021) 2101145.   DOI
2 L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, Y. Cui, Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity, Adv. Energy Mater., 1 (2011) 523-527.   DOI
3 Q. Xu, J. K. Sun, Z. L. Yu, Y. X. Yin, S. Xin, S. H. Yu, Y. G. Guo, SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode, Adv. Mater., 30 (2018) 1707430.   DOI
4 M. Xia, Z. Zhou, Y. Su, Y. Li, Y. Wu, N. Zhou, H. Zhang, X. Xiong, Scalable synthesis SiO@ C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery, Appl. Surf. Sci., 467 (2019) 298-308.   DOI
5 D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang, A. Li, J. Zhou, Z. Ma, X. Chen, H. Song, One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Mater., 24 (2020) 312-318.   DOI
6 B. H. Park, G. W. Lee, S. B. Choi, Y. T. Kim, K. B. Kim, Triethoxysilane-derived SiOx-assisted structural reinforcement of Si/carbon nanotube composite for lithium-ion battery, Nanoscale 12 (2020) 22140-22149.   DOI
7 S. Z. Zeng, Y. Niu, J. Zou, X. Zeng, H. Zhu, J. Huang, L. Wang, L. B. Kong, P. Han, Green and scalable preparation of disproportionated SiO anode materials with cocoon-like buffer layer, J. Power Sources, 466 (2020) 228234.   DOI
8 Y. Qiao, W. Sheng, C. He, B. Yang, H. Xu, C. Liu, Z. Rao, A facile freeze-thaw ultrasonic assisted circulation method of graphite flakes prepared by anode graphite from spent lithium-ion batteries for application in nanofluids, Sustain Energy Fuels, 5 (2021) 4882-4894.   DOI
9 D. Lin, Z. Lu, P. C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu, Y. Cui, A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries, Energy Environ. Sci., 8 (2015) 2371-2376.   DOI
10 M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi, Y. Cui, Novel size and surface oxide effects in silicon nanowires as lithium battery anodes, Nano Lett., 11 (2011) 4018-4025.   DOI
11 N. Ding, Y. Chen, R. Li, J. Chen, C. Wang, Z. Li, S. Zhong, Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries, Electrochim. Acta, 367 (2021) 137491.   DOI
12 R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small 5 (2009) 2236-2242.   DOI
13 L. Lee, W. T. A. Ran, J. H. Lee, S. M Hwang, Y. J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries, Chem. Eng. J., 442 (2022) 136166.   DOI
14 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol, 3 (2008) 31-35.   DOI
15 M. A. Rahman, G. Song, A. I. Bhatt, Y. C. Wong, C. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26 (2016) 647-678.   DOI
16 K. Lim, H. Park, J. Ha, Y. T. Kim, J. Choi, Dual-carbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries, J. Ind. Eng. Chem., 101 (2021) 397-404.   DOI
17 Y. Zhang, G. Guo, C. Chen, Y. Jiao, T. Li, X. Chen, Y. Yang, D. Yang, A. Dong, An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes, J. Power Sources, 426 (2019) 116-123.   DOI
18 D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene, Nano Lett., 7 (2007) 238-242.   DOI
19 W. Ren, Y. Wang, Z. Zhang, Q. Tan, Z. Zhong, F. Su, Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?, J. Mater. Chem. A Mater., 4 (2016) 552-560.   DOI
20 L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes, Nano Lett., 17 (2017) 3681-3687.   DOI
21 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 97 (2006) 187401.   DOI
22 Q. Q. Li, X. Zhang, W. P. Han, Y. Lu, W. Shi, J. B. Wu, P. H. Tan, Raman spectroscopy at the edges of multilayer graphene, Carbon 2015, 85, 221-224.   DOI
23 M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction, J. Cryst. Growth., 229 (2001) 457-461.   DOI
24 D. A. Lozhkina, E. V. Astrova, A. M. Rumyantsev, Dependence of the electrochemical parameters of composite SiO/C anodes for lithium-ion batteries on the composition and synthesis temperature, Technical Physics, 92 (2022) 339-351.
25 W. Choi, J. Ha, Y. T. Kim, J. Choi, Highly stable iron- and carbon-based electrodes for Li-Ion batteries: negative fading and fast charging within 12 min, Chem. Sus. Chem., 15 (2022) e200201137.
26 J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang, Z. Ren, C. Zhi, J. Yu, 3D graphene fibers grown by thermal chemical vapor deposition, Adv. Mater., 30 (2018) 1705380.   DOI
27 C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chemistry, 5 (2013) 1042-1048.   DOI
28 D. L. Silva, J. L. E Campos, T. F. D. Fernandes, J. N. Rocha, L. R. P. Machado, E. M. Soares, D. R. Miquita, H. Miranda, C. Rabelo, O. P. Vilela Neto, Raman spectroscopy analysis of number of layers in mass-produced graphene flakes, Carbon 161 (2020) 181-189.   DOI
29 L. Feng, J. Song, C. Sun, F. Liu, Y. Wang, Improving the performance of SiOx/Carbon materials for high energy density commercial lithium-ion batteries based on montmorillonite, Chem. Electro. Chem., 7 (2020) 445-451.
30 S. W. Lee, M. T McDowell, J. W. Choi, Y. Cui, Anomalous shape changes of silicon nanopillars by electrochemical lithiation, Nano Lett, 11 (2011) 3034-3039.   DOI
31 J. Zhang, C. Zhang, Z. Liu, J. Zheng, Y. Zuo, C. Xue, C. Li, B. Cheng, High-performance ball- milled SiOx anodes for lithium ion batteries. J. Power Sources, 339 (2017) 86-92.   DOI
32 M. Li, J. Gu, X. Feng, H. He, C. Zeng, Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability, Electrochim Acta, 164 (2015) 163- 170.   DOI
33 X. Li, Y. Xing, J. Xu, Q. Deng, L. H. Shao, Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery, Chem. Comm., 56 (2020) 364-367.   DOI
34 W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, Lithiation of silicon nanoparticles confined in carbon nanotubes, ACS Nano 9 (2015) 5063-5071.   DOI
35 Z. Zhang, X. Han, L. Li, P. Su, W. Huang, J. Wang, J. Xu, C. Li, S. Chen, Y. Yang, Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes, J. Power Sources 450 (2020) 227593.   DOI
36 C. Z. Zhang, J. C. Jiang, A. C. Huang, Y. Tang, L. J. Xie, J. Zhai, Z. X. Xing, A novel multifunctional additive strategy improves the cycling stability and thermal stability of SiO/C anode Li-ion batteries, Process Saf. Environ. Prot., 164 (2022) 555-565.   DOI
37 Y. Su, C. Wang, Z. Hong, W. Sun, Thermal disproportionation for the synthesis of silicon nanocrystals and their photoluminescent properties, Front Chem, 575 (2021).
38 H. Li, H. Li, Z. Yang, L. Yang, J. Gong, Y. Liu, G. Wang, Z. Zheng, B. Zhong, Y. Song, SiOx anode: from fundamental mechanism toward industrial application, Small 17 (2021) 2102641.   DOI
39 G. Huang, J. Han, Z.Lu, D. Wei, H. Kashani, K. Watanabe, M. Chen, Ultrastable silicon anode by three-dimensional nanoarchitecture design, ACS Nano, 14 (2020) 4374-4382.   DOI
40 L. Liu, M. Li, L. Chu, B. Jiang, R. Lin, Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer self-assembly, Appl. Surf. Sci., 476 (2019) 501-512.   DOI