Acknowledgement
이 논문은 국방과학연구소의 지원을 받아 수행된 연구임(UE211060GD).
References
- W. Feng, Status and development trends for fluorinated carbon in China, New Carbon Mater., 3, 130-142 (2023). https://doi.org/10.1016/S1872-5805(23)60716-4
- B. Sayahpour, H. Hirsh, S. Bai, N. B. Schorr, T. N. Lambert, M. Mayer, W. Bao, D. Cheng, M. Zhang, and K. Leung, Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery, Adv. Energy Mater., 12, 2103196 (2022).
- M. A. Reddy and M. Fichtner, Batteries based on fluoride shuttle, J. Mater. Chem., 21, 17059-17062 (2011). https://doi.org/10.1039/c1jm13535j
- N. Ha, S. G. Jeong, C. Lim, S. Ha, C. G. Min, Y. Choi, and Y. S. Lee, Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023). https://doi.org/10.1007/s42823-023-00488-1
- K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im, and Y. S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond, J. Ind. Eng. Chem., 99, 48-54 (2021). https://doi.org/10.1016/j.jiec.2021.04.002
- S. Ha, C. Lim, and Y. S. Lee, Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials, J. Ind. Eng. Chem., 111, 1-17 (2022). https://doi.org/10.1016/j.jiec.2022.03.044
- Q. Zhang, S. D'Astorg, P. Xiao, X. Zhang, and L. Lu, Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries, J. Power Sources, 195, 2914-2917 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.096
- S. S. Zhang, D. Foster, J. Wolfenstine, and J. Read, Electrochemical characteristic and discharge mechanism of a primary Li/CFX cell, J. Power Sources, 187, 233-237 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.076
- Y. Peng, Y. Liu, R. Ali, J. Ma, J. Hou, X. Yang, and X. Jian, Air plasma-induced carbon fluoride enabling active C-F bonds for double-high energy/power densities of Li/CFX primary battery, J. Alloys Compd., 905, 164151 (2022).
- N. Sharma, M. Dubois, K. Guerin, V. Pischedda, and S. Radescu, Fluorinated (nano)carbons: CFX electrodes and CFX-based batteries, Energy Technol., 9, 2000605 (2020).
- S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., 133, 525-532 (2024). https://doi.org/10.1016/j.jiec.2023.12.029
- J. Ma, Y. Liu, Y. Peng, X. Yang, J. Hou, C. Liu, Z. Fang, and X. Jian, UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFX primary batteries, Compos. B Eng., 230, 109494 (2022).
- C. Lim, S. Ha, N. Ha, S. G. Jeong, and Y. S. Lee, Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., 34, 611-617 (2024). https://doi.org/10.1007/s42823-023-00597-x
- H. P. Zhou, G. T. Chen, L. S. Yao, S. Zhang, T. T. Feng, Z. Q. Xu, Z. X. Fang, and M. Q. Wu, Plasma-enhanced fluorination of layered carbon precursors for high-performance CFX cathode materials, J. Alloys Compd., 941, 168998 (2023).
- S. Ha, C. Lim, S. Myeong, I. W. Lee, and Y. S. Lee, Improvement of the electrochemical properties of Li/CFX primary batteries induced by nitrogen plasma treatment from silica and carbon fluoride, Carbon Lett., 34, 1521-1528 (2024). https://doi.org/10.1007/s42823-024-00719-z
- D. W. Zou, X. G. Fu, G. B. Chen, Y. F. Liu, B. S. Wu, and X. Jian, Acetylene/argon mixture plasma to build ultrathin carbon bridge of CFX/C/MnO2 for high-rate lithium primary battery, Rare Metals, 43, 2574-2584 (2024).
- Z. Chen, Q. Zhang, and Q. Liang, Carbon-coatings improve performance of Li-ion battery, Nanomaterials, 12, 1936 (2022).
- D. Kim, K. H. Kim, C. Lim, and Y. S. Lee, Carbon-coated SiOX anode materials via PVD and pyrolyzed fuel oil to achieve lithium-ion batteries with high cycling stability, Carbon Lett., 32, 321-328 (2022). https://doi.org/10.1007/s42823-021-00314-6
- U. Nisar, N. Muralidharan, R. Essehli, R. Amin, and I. Belharouak, Valuation of surface coatings in high-energy density lithium-ion battery cathode materials, Energy Storage Mater., 38, 309-328 (2021). https://doi.org/10.1016/j.ensm.2021.03.015
- L. Zhu, L. Li, J. Zhou, Y. Pan, W. Lei, and Z. Ma, Polypyrrole-coated graphite fluorides with high energy and high power densities for Li/CFX battery, Int. J. Electrochem. Sci., 11, 6413-6422 (2016). https://doi.org/10.20964/2016.08.06
- L. Li, L. Zhu, Y. Pan, W. Lei, Z. Ma, Z. Li, J. Cheng, and J. Zhou, Integrated polyaniline-coated CFx cathode materials with enhanced electrochemical capabilities for Li/CFX primary battery, Int. J. Electrochem. Sci., 11, 6838-6847 (2016). https://doi.org/10.20964/2016.08.41
- L. Zhu, Y. Pan, L. Li, J. Zhou, W. Lei, J. Deng, and Z. Ma, Preparation of CFX@C microcapsules as a high-rate capability cathode of lithium primary battery, Int. J. Electrochem. Sci.,11, 14-22 (2016). https://doi.org/10.1016/S1452-3981(23)15822-6
- J. Hou, F. Cao, H. Xu, J. Fu, R. Ali, Y. Liu, and X. Jian, Constructing carbon-decorated CFX nanocapsule by atomic layer deposition and catalytic chemical vapor deposition for high-capacity lithium primary battery, Appl. Surf. Sci., 596, 153570 (2022).
- Z. Lu, N. Liu, H. W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui, Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes, ACS Nano, 9, 2540-2547 (2015). https://doi.org/10.1021/nn505410q
- Y. S. Han and J. Y. Lee, Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition, Electrochim. Acta, 48, 1073-1079 (2003). https://doi.org/10.1016/S0013-4686(02)00845-9
- H. Lia and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 48, 1201-1217 (2012). https://doi.org/10.1039/C1CC14764A
- C. Qi, S. Li, Z. Yang, Z. Xiao, L. Zhao, F. Yang, G. Ning, X. Ma, C. Wang, J. Xu, and J. Gao, Suitable thickness of carbon coating layers for silicon anode, Carbon, 186, 530-538 (2022). https://doi.org/10.1016/j.carbon.2021.10.062
- G. D. Park, J. H. Choi, D. S. Jung, J. S. Park, and Y. C. Kang, Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries, J. Alloys Compd., 821, 153224 (2020).
- D. V. Korzhenko, Y. N. Yurjev, D. R. Emlin, S. A. Plotnikov, A. B. Vladimirov, I. Y. Romanov, B. A. Loginov, and A. B. Loginov, Comparative analysis of properties of the carbon-based coatings obtained through various PVD and CVD deposition methods, J. Phys. Conf. Ser., 1443, 012006 (2020).
- S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023). https://doi.org/10.1007/s11814-022-1330-x
- K. S. Kim, J. U. Hwang, J. S. Im, J. D. Lee, J. H. Kim, and M. I. Kim, The effect of waste PET addition on PFO-based anode materials for improving the electric capacity in lithium-ion battery, Carbon Lett., 30, 545-553 (2020). https://doi.org/10.1007/s42823-020-00124-2
- J. H. Kim, J. G. Kim, K. B. Lee, and J. S. Im, Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch, Carbon Lett., 29, 203-212 (2019). https://doi.org/10.1007/s42823-019-00022-2
- M. J. Jung, J. Y. Jung, D. Lee, and Y. S. Lee, A new pitch reforming from pyrolysis fuel oil by UV irradiation, J. Ind. Eng. Chem., 22, 70-74 (2015). https://doi.org/10.1016/j.jiec.2014.06.026
- N. Ha, C. Lim, S. Ha, S. Myeong, and Y. S. Lee, Electrochemical characteristics of CFX based lithium primary batteries produced by carbon fiber reinforced plastic-derived waste carbon fibers, Appl. Chem. Eng., 34, 515-521 (2023). https://doi.org/10.14478/ACE.2023.1061
- S. Cheon, N. Ha, C. Lim, S. Myeong, I. W. Lee, and Y. S. Lee, Fabrication and eletrochemical characterization of carbon fluoride-based lithium-ion primary batteries with improved rate performance using oxygen plasma, Appl. Chem. Eng, 34, 534-540 (2023).
- J. H. Lim, Y. Myung, M. H. Yang, and J. Lee, Facile formation of a LiF-carbon layer as an artificial cathodic electrolyte interphase through encapsulation of a cathode with carbon monofluoride, ACS Appl. Mater. Interfaces, 13, 31741-31748 (2021). https://doi.org/10.1021/acsami.1c08419
- L. Wang, Y. Li, S. Wang, P. Zhou, Z. Zhao, X. Li, and J. Zhou, Fluorinated nanographite as a cathode material for lithium primary batteries, ChemElectroChem, 6, 2119-2343 (2019). https://doi.org/10.1002/celc.201900348
- J. Ma, C. Wang, and S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, J. Power Sources, 164, 849-856 (2007).
- S. Myeong, S. Ha, C. Lim, C. G. Min, S. Cheon, Y. Yu, X. Yang, and Y. S. Lee, Pore structure and N/F bifunctional groups in hierarchical porous carbons via spontaneous silica etching for enhanced capacitive deionization performance, Sep. Purif. Technol., 350, 128020 (2024).
- S. Myeong, S. Ha, C. Lim, C. G. Min, N. Ha, B. K. Kim, and Y. S. Lee, Synergistic effects of fluorine plasma on improving carbon aerogel anodes performance in lithium-ion batteries, J. Electroanal. Chem., 964, 118332 (2024).