• Title/Summary/Keyword: Carbon supports

Search Result 160, Processing Time 0.033 seconds

Geochemical characteristics of light yellow brown surface sediments and dark brown colored subsurface sediments in KODOS-89 area, western part of Clarion-Clipperton fracture zone (KODOS-89 지역 표층의 황색 퇴적물과 그 하부 갈색 퇴적물의 지구화학적 특성)

  • 정회수;강정극
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.193-203
    • /
    • 1991
  • KODOS (Korea Deep ocean Study)-89 sediments, recovered from western part of Clarion-Clipperton fracture zone in north Pacific, show two distinctly colored layer zones: surface yellow brown layer (unit A) and subsurface dark brown layer (unit B), and roughly recognized as Quaternary and Tertiary in age, respectively. Geochemical characteristics are also different in those two units. Smectite, water, micronodule, and heavy metal contents are higher in unit B, while POC content is higher in unit A. High smectite and low POC contents in unit B are due to the longer formation period of smectite, almost decomposition of labile organic matter in unit B relative to unit A. High water content in unit B is caused by coarse fabric which results from higher content of spicules and spines. Additionally, stronger electrostatic repulsion force caused by high smectite content also supports high water content in unit B relative to unit A. Variations in heavy metal contents are closely related to the amount of micronodule, which has higher metal contents than that of sediment. Therefore, we conclude that the differences of geochemical characteristics in unit A and unit B are resulted from the different diagenetic durations of unit A and unit B.

  • PDF

Effects of Customized Fertilizer Application on Growth and Yield of Rice (맞춤형비료 시용에 따른 벼 생육 및 비료 사용량 절감 효과)

  • Lee, Jong-Sik;Song, Yo-Sung;Lee, Ye-Jin;Yun, Hong-Bae;Jang, Byong-Chun;Kim, Rog-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1124-1129
    • /
    • 2011
  • The importance of environment-friendly agriculture is being magnified as a new growth engine industry in pursuit of low carbon, green growth policies. In order to provide technical supports for pushing ahead with the environment-friendly agriculture policies, we estimated the effects of customized fertilization on growth and yield of rice and fertilizer reduction compared to conventional fertilization and single-element fertilization. In rice plant growth and rice yield, no statistically significant difference between the three fertilization treatments was observed. In contrast, customized fertilization showed high disaster resistance reducing the damage caused by rice lodging during a typhoon. The average N application in farms showing high rice lodging amounted to $135kg\;N\;ha^{-1}$ while $135-138kg\;N\;ha^{-1}$ was known as the critical range of rice lodging in Korea. The fertilizer reduction rate of customized fertilization compared to conventional fertilization of investigated farms was on average 22.5%. We estimated the short-term effects of customized fertilization in the first year after application. In future, there is need for continuous examination of rice growth and soil environment change due to successive application of customized fertilizer.

A Preliminary Study on Public Private Partnership in International Forestry Sector to Climate Change Based on Awareness Analysis of Private Enterprises (민간 기업의 인식조사를 바탕으로 한 기후변화 대응 국제산림분야 민관파트너십 사업 활성화 방안 기초 연구)

  • Kim, Jiyeon;Yoon, Taekyung;Han, Saerom;Park, Chanwoo;Lee, Suekyung;Kim, Sohee;Lee, Eunae;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.281-291
    • /
    • 2012
  • Forests act as carbon sinks and also improve water resources and biodiversity to climate change. Secure funding, administrative support, and sustainable management systems are essential to conserve forests and to implement international forestry related projects to climate change. Public private partnership (PPP) could be an effective way for forestry sector in developing countries. Awareness analysis should be preceded in order to encourage participation of enterprises for the diversification of funding and the enhancing quality of projects. We conducted a survey targeting more than 129 private enterprises for awareness analysis. As a result, lack of information, complexity of processes and low profit resulted in low interest on forest projects from private enterprises. Improving awareness of recipient countries on forest resources, financial and institutional supports from the public sector, information sharing, performance management and equal partnership between sectors were suggested to encourage PPP in international forestry related projects to climate change.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

A Multi-Criteria Spatial Decision Support System for Smart Hydrogen Energy Plant Location Planning in the Gangwon-Do Region, South Korea (강원도 지역 스마트 수소에너지 플랜트 입지계획을 위한 다기준 공간의사결정 지원 시스템 연구)

  • Yum, Sang-Guk;Adhikari, Manik Das
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.381-395
    • /
    • 2023
  • This paper presents a GIS-based site suitability analysis for a smart hydrogen energy plant in the Gangwon-Do region, South Korea. A GIS-based multi-criteria decision analysis (MCDA) was implemented in this study to identify the most suitable sites for the development of smart hydrogen energy plants. The study utilizes various spatial data layers, including hydrogen generation potential and climatic conditions, environmental and topographic conditions, and natural catastrophic conditions, to evaluate the suitability of potential sites for the hydrogen energy plant. The spatial data layers were then used to rank and prioritize the sites based on suitability. The findings revealed that 4.26% of the study area, or 712.14 km2, was suitable for constructing smart hydrogen energy plants. Some regions of Cheorwon-gun, Chuncheon-si, Wonju-si, Yanggu-gun, Gangneung-si, Hoengseong-gun, and near the coastal region along the east coast were found to be suitable for solar and wind energy utilization. The proposed MCDA provides a valuable tool for decision-makers and stakeholders to make informed decisions on the location of smart hydrogen energy plants and supports the transition to a sustainable and low-carbon energy system. Decision-makers can use the results of this study to select suitable sites for constructing smart hydrogen energy plants.

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

A Study on the Recovery of Radiation Hardening of PWR Pessure Vessel Steel Using Michrohardness and Positron Annihilation (미세경도와 양전자 소멸을 이용한 PWR 압력용기강의 조사 경화 회복에 관한 연구)

  • Garl, Seong-Je;Yoon, Young-Ku;Park, Soon-Pil;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.337-350
    • /
    • 1990
  • A post-irradiation annealing study was conducted with use of reactor pressure vessel(RPV) steel A533B Cl.1 base metal irradiated to a dose of 4.84$\times$10$^{18}$ n/$\textrm{cm}^2$ at about 38$0^{\circ}C$. Microhardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurs in the temperature range of 280-3O5$^{\circ}C$, Michrohardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurrs in the temperature range of 280-305$^{\circ}C$. The variations of Ip, Iw and R parameters indicated that the formation of vacancy clusters by vacancy agglomeration and the annihilation of monovacancies are the first recovery process. The second recovery process occurs in the range of 405-49$0^{\circ}C$ and positron annihilation parameters measured indicated that the dissolution of carbon atoms decorated around vacancy-type defects and possible precipitates, and the annihilation of monovacancies give rise to the second recovery process. It was further indicated that radiation anneal hardening (RAH) in the range of 305-405$^{\circ}C$ between the temperature ranges for the two processes occurs due to the formation of carbon-decorated vacancy clusters and precipitates. The activation energies, orders of reaction and other characteristics of recovery processes were determined by the Meechan-Brinkman method. The activation energy for the first recovery process was determined as 1.76 eV and that for the second recovery process as 2.00eV. These values are lower than those obtained by other workers. This difference may be attributed to the lower copper content of the RPV steel used in the present study. The order of reaction for the first recovery process was determined as 1.78, while that for the second recovery process as 1.67 Non-integer orders of reaction for recovery processes seem to be attributed to the fact that several mechanisms for the first order and the second order of reaction are compounded in one process. This result also supports for the above conclusions from measurements of PA parameters.

  • PDF

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.