DOI QR코드

DOI QR Code

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports

Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과

  • Kim, Eun-Jeong (Department of Chemical Engineering, Chungbuk National University) ;
  • Kang, Dong-Chang (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2016.09.05
  • Accepted : 2016.11.23
  • Published : 2017.02.01

Abstract

Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

$TiO_2$, $Al_2O_3$, $ZrO_2$, $SiO_2$와 같은 다양한 담체에 습식함침법을 이용하여 Pd 기반 촉매를 제조하여 일산화탄소 존재하에 수소의 선택적 산화반응에 적용하였다. 제조된 촉매는 물리화학적 특성을 알아보기 위하여 XRD, $N_2$ 흡착, CO-, (CO+$H_2O$)-TPD, CO-TPR, XPS등의 특성분석을 수행하였다. CO-TPD와 (CO+$H_2O$)-TPD를 통해 $CO_2$ 탈착에 대한 $H_2O$의 영향을 알아보았으며 이러한 TPD 결과는 $H_2/CO$ 전환율과 상관관계가 있음을 확인하였다. 사용된 촉매 중에서 $Pd/ZrO_2$$H_2$ 전환율 측면에서 가장 활성이 좋은 것으로 나타났다. $H_2O$가 첨가된 선택적 $H_2$ 산화반응에서는 $H_2O$, CO, $H_2$가 경쟁흡착을 하였으며, 첨가된 $H_2O$가 CO 및 $H_2$의 반응을 촉진시켰다.

Keywords

References

  1. Khalil, M. A. K. and Rasmussen, R. A., "Global Decrease in Atmospheric Carbon Monoxide Concentration," Nature, 370, 639-641(1994). https://doi.org/10.1038/370639a0
  2. Homel, M., Gür, T. M., Koh, J. H. and Virkar, A. V., "Carbon Monoxide-fueled Solid Oxide Fuel Cell," J. Power Sources, 195, 6367-6372(2010). https://doi.org/10.1016/j.jpowsour.2010.04.020
  3. Jozwiak, W. K., Kaczmarek, E., Maniecki, T. P., Ignaczak, W. and Maniukiewicz, W., "Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres," Appl. Catal., A: Gen. 326, 17-27(2007). https://doi.org/10.1016/j.apcata.2007.03.021
  4. Lim, Y.-I., Choi, J. S., Moon, H.-M. and Kim, G.-H., "Technoeconomic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (CO) Separation from Linze-Donawitz Gas (LDG)," Korean Chem. Eng. Res., 54(3), 320-331(2016). https://doi.org/10.9713/kcer.2016.54.3.320
  5. Osaki, T., Narita, N., Horiuchi, T., Sugiyama, T., Masuda, H. and Suzuki, K., "Kinetics of Reverse Water Gas Shift (RWGS) Reaction on Metal Disulfide Catalysts," J. Mol. Catal. A: Chem., 125, 63-71(1997). https://doi.org/10.1016/S1381-1169(97)00080-0
  6. Wyse, C., Vininski, J. and Watanabe, T., "Cylinder, Purifier Technologies for Controlling Contamination in CO," Solid State Technol., 45, 125-130(2002).
  7. Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B. and Stiegman, A., "Microwave-specific Enhancement of the Carboncarbon Dioxide (Boudouard) Reaction," J. Phys. Chem. C, 117, 26871-26880(2013). https://doi.org/10.1021/jp4076965
  8. Pekridis, G., Kalimeri, K., Kaklidis, N., Vakouftsi, E., Iliopoulou, E., Athanasiou, C. and Marnellos, G., "Study of the Reverse Water Gas Shift (RWGS) Reaction over Pt in a Solid Oxide Fuel Cell (SOFC) Operating Under Open and Closed-circuit Conditions," Catal. Today, 127, 337-346(2007). https://doi.org/10.1016/j.cattod.2007.05.026
  9. Rostrupnielsen, J. R. and Hansen, J.-H. B., "$CO_2$-reforming of Methane over Transition Metals," J. Catal., 144, 38-49(1993). https://doi.org/10.1006/jcat.1993.1312
  10. Lu, L., Li, H., Hong, Y., Luo, Y., Tang, Y. and Lu, T., "Improvement of Electrocatalytic Performance of Carbon Supported Pd Anodic Catalyst in Direct Formic Acid Fuel Cell by Ethylenediamine-tetramethylene Phosphonic Acid," J. Power Sources, 210, 154-157(2012). https://doi.org/10.1016/j.jpowsour.2012.03.010
  11. Bulushev, D. A., Beloshapkin, S. and Ross, J. R., "Hydrogen from Formic Acid Decomposition over Pd and Au Catalysts," Catal. Today, 154, 7-12(2010). https://doi.org/10.1016/j.cattod.2010.03.050
  12. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to $CO_2$ Capture," Science, 319, 939-943(2008). https://doi.org/10.1126/science.1152516
  13. Lilga, M. A., Hallen, R. T. and Nelson, D. A., "Separation of Gas Mixtures by Transition-metal Complexes," J. Am. Chem. Soc., 33, 310-314(1988).
  14. Tanaka, K.-I., Shou, M., He, H. and Shi, X., "Significant Enhancement of the Oxidation of CO by $H_2$ and/or $H_2O$ on a $FeOx/Pt/TiO_2$ Catalyst," Catal. Lett., 110, 185-190(2006). https://doi.org/10.1007/s10562-006-0107-x
  15. Shou, M., Takekawa, H., Ju, D.-Y., Hagiwara, T., Lu, D.-L. and Tanaka, K., "Activation of a $Au/TiO_2$ Catalyst by Loading a Large Amount of Fe-Oxide: Oxidation of CO Enhanced by $H_2$ and $H_2O$," Catal. Lett., 108, 119-124(2006). https://doi.org/10.1007/s10562-006-0048-4
  16. Gorte, R. J. and Zhao, S., "Studies of the Water-gas-shift Reactions With Ceria-supported Precious Metals," Catal. Today, 104, 18-24(2005). https://doi.org/10.1016/j.cattod.2005.03.034
  17. Moon, D. J., "Low Temperature WGS Catalysts for Hydrogen Station and Fuel Processor Applications," Catal. Surv. Asia, 13, 191-204(2009). https://doi.org/10.1007/s10563-009-9077-5
  18. Lee, S. H., Kim, J. N., Eom, W. H., Ryi, S.-K., Park, J.-S. and Beak, I. H., "Development of Pilot WGS/multi-layer Membrane for $CO_2$ Capture," Chem. Eng. J., 207-208, 521-525(2012). https://doi.org/10.1016/j.cej.2012.07.013
  19. Kochubey, D. I., Pavlova, S. N., Novgorodov, B. N., Kryukova, G. N. and Sadykov, V. A., "The Influence of Support on the Lowtemperature Activity of Pd in the Reaction of CO Oxidation," J. Catal., 161, 500-506(1996). https://doi.org/10.1006/jcat.1996.0211
  20. Bowker, W., Stone, P., Bennett, R. and Perkins, N., "CO Adsorption on a $Pd/TiO_2(110)$ Model Catalyst," Surf. Sci., 497, 155-165(2002). https://doi.org/10.1016/S0039-6028(01)01640-5
  21. Lee, H. H., Jang, D. H. and Hong, S. C., "A Study on the Simultaneous Oxidation of $CH_4$ and CO over $Pd/TiO_2$ catalyst," Appl. Chem. Eng., 23, 253-258(2012).
  22. Zhou, R., Zhao, B. and Yue, B., "Effect of $CeO_2-ZrO_2$ Present in $Pd/Al_2O_3$ Catalysts on the Redox Behavior of PdOx and Their Combustion Activity," Appl. Surf. Sci., 254, 4701-4707(2008). https://doi.org/10.1016/j.apsusc.2008.01.075
  23. Radkevich, V. Z., Senko, T. L., Wilson, K. Grishenko, L. M., Zaderko, A. N. and Diyuk, V. Y., "The Influence of Surface Functionalization of Activated Carbon on Palladium Dispersion and Catalytic Activity in Hydrogen Oxidation," Appl. Catal. A: Gen., 335, 241-251(2008). https://doi.org/10.1016/j.apcata.2007.11.029
  24. Park. J.-H., Cho, J. H., Kim, Y. J., Kim, E. S., Han, H. S. and Shin, C.-H., "Hydrothermal Stability of $Pd/ZrO_2$ Catlaysts for High Temperature Methane Combustion," Appl. Catal. B: Environ., 160-161, 135-143(2014). https://doi.org/10.1016/j.apcatb.2014.05.013