DOI QR코드

DOI QR Code

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review

바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설

  • Ha, Jeong-Myeong (Clean Energy Research Center, Korea Institute of Science and Technology)
  • 하정명 (한국과학기술연구원 청정에너지연구센터)
  • Received : 2022.04.15
  • Accepted : 2022.05.16
  • Published : 2022.06.30

Abstract

Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

바이오매스는 현재 석유, 천연가스, 석탄 등 화석 연료에서 얻을 수 있는 액체 연료와 유기 화합물을 생산할 수 있는 지속 가능한 대체 자원이다. 화석 연료를 사용하면 온실가스를 배출하기 때문에 바이오매스와 같은 탄소중립적 원료를 사용하는 것은 기후 변화 대응에 기여할 수 있다. 바이오매스 원료로부터 석유 대체 화학 제품과 연료를 생산하기 위한 생물학적 및 화학적 공정이 제안되었지만, 바이오매스에 포함된 높은 산소 함량때문에 화석 연료를 완전히 대체하기 어렵다. 석유와 유사한 연료와 화학 물질을 생산하려면 바이오매스 파생물에 존재하는 산소 원자를 제거하거나 산소 기능기를 전환해야 하며, 이는 촉매 화학적 수첨탈산소화에 의해 달성될 수 있다. 바이오매스 열분해 오일, 리그노셀룰로오스 유래 화학물질, 지질과 같은 원료를 탈산소 연료 및 화학물질로 전환하기 위해 수첨탈산소화가 진행되었다. 높은 표면적의 금속 산화물 또는 탄소에 지지된 귀금속 및 전이 금속으로 구성된 다기능성 촉매는 효율적인 수첨탈산소 촉매로 사용되었다. 본 총설에서는 문헌에서 제안된 촉매를 확인하고 이러한 촉매를 이용한 수첨탈산소 반응 시스템이 논의하였다. 문헌에 보고된 수첨탈산소화 방법을 기반으로, 실현 가능한 수첨탈산소화 공정 개발 방향이 제시하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 (한국연구재단) 기후변화대응기술개발사업(2020M1A2A2079798)의 지원으로 수행되었다.

References

  1. Luque, R., Herrero-Davila, L., Campelo, J. M., Clark, J. H., Hidalgo, J. M., Luna, D., Marinas, J. M., and Romero, A. A., "Biofuels: a technological perspective," Energy Environ. Sci., 1(5), 542-564 (2008). https://doi.org/10.1039/b807094f
  2. Furimsky, E., "Catalytic hydrodeoxygenation," Appl. Catal., A, 199, 147-190 (2000). https://doi.org/10.1016/S0926-860X(99)00555-4
  3. Seo, J., Kwon, J. S., Choo, H., Choi, J.-W., Jae, J., Suh, D. J., Kim, S., and Ha, J.-M., "Production of deoxygenated high carbon number hydrocarbons from furan condensates: Hydrodeoxygenation of biomass-based oxygenates," Chem. Eng. J., 377, 119985 (2019). https://doi.org/10.1016/j.cej.2018.09.146
  4. Kim, G., Seo, J., Choi, J.-W., Jae, J., Ha, J.-M., Suh, D. J., Lee, K.-Y., Jeon, J.-K., and Kim, J.-K., "Two-step continuous upgrading of sawdust pyrolysis oil to deoxygenated hydrocarbons using hydrotreating and hydrodeoxygenating catalysts," Catal. Today, 303, 130-135 (2018). https://doi.org/10.1016/j.cattod.2017.09.027
  5. Elliott, D. C., Hart, T. R., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V., Zacher, A. H., and Solantausta, Y., "Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust," Energy Fuels, 26(6), 3891-3896 (2012). https://doi.org/10.1021/ef3004587
  6. Kim, I., Dwiatmoko, A. A., Choi, J.-W., Suh, D. J., Jae, J., Ha, J.-M., and Kim, J.-K., "Upgrading of sawdust pyrolysis oil to hydrocarbon fuels using tungstate-zirconia-supported Ru catalysts with less formation of cokes," J. Ind. Eng. Chem., 56(Supplement C), 74-81 (2017). https://doi.org/10.1016/j.jiec.2017.06.013
  7. Choi, W., Jo, H., Choi, J.-W., Suh, D. J., Lee, H., Kim, C., Kim, K. H., Lee, K.-Y., and Ha, J.-M., "Stabilization of acid-rich bio-oil by catalytic mild hydrotreating," Environ. Pollut., 272, 116180 (2021). https://doi.org/10.1016/j.envpol.2020.116180
  8. Kim, Y., Shim, J., Choi, J.-W., Jin Suh, D., Park, Y.-K., Lee, U., Choi, J., and Ha, J.-M., "Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent," Energy Convers. Manage., 213, 112728 (2020). https://doi.org/10.1016/j.enconman.2020.112728
  9. Li, C., Nakagawa, Y., Tamura, M., Nakayama, A., and Tomishige, K., "Hydrodeoxygenation of Guaiacol to Phenol over Ceria-Supported Iron Catalysts," ACS Catal., 10(24), 14624-14639 (2020). https://doi.org/10.1021/acscatal.0c04336
  10. Lee, C. R., Yoon, J. S., Suh, Y.-W., Choi, J.-W., Ha, J.-M., Suh, D. J., and Park, Y.-K., "Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol," Catal. Commun., 17, 54-58 (2012). https://doi.org/10.1016/j.catcom.2011.10.011
  11. Dwiatmoko, A. A., Kim, I., Zhou, L., Choi, J.-W., Suh, D. J., Jae, J., and Ha, J.-M., "Hydrodeoxygenation of guaiacol on tungstated zirconia supported Ru catalysts," Appl. Catal., A, 543, 10-16 (2017). https://doi.org/10.1016/j.apcata.2017.05.037
  12. Guo, Q., Wu, M., Wang, K., Zhang, L., and Xu, X., "Catalytic Hydrodeoxygenation of Algae Bio-oil over Bimetallic Ni-Cu/ZrO2 Catalysts," Ind. Eng. Chem. Res., 54(3), 890-899 (2015). https://doi.org/10.1021/ie5042935
  13. Jafarian, S., Tavasoli, A., and Nikkhah, H., "Catalytic hydrotreating of pyro-oil derived from green microalgae spirulina the (Arthrospira) plantensis over NiMo catalysts impregnated over a novel hybrid support," Int. J. Hydrogen Energy, 44(36), 19855-19867 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.182
  14. Sitthisa, S., and Resasco, D. E., "Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni," Catal. Lett., 141(6), 784-791 (2011). https://doi.org/10.1007/s10562-011-0581-7
  15. Jae, J., Zheng, W., Karim, A. M., Guo, W., Lobo, R. F., and Vlachos, D. G., "The Role of Ru and RuO2 in the Catalytic Transfer Hydrogenation of 5-Hydroxymethylfurfural for the Production of 2,5-Dimethylfuran," ChemCatChem, 6(3), 848-856 (2014). https://doi.org/10.1002/cctc.201300945
  16. Fu, L., Ba, W., Li, Y., Li, X., Zhao, J., Zhang, S., and Liu, Y., "Hydrodeoxygenation of non-edible bio-lipids to renewable hydrocarbons over mesoporous SiO2-TiO2 supported NiMo bimetallic catalyst," Appl. Catal., A, 633, 118475 (2022). https://doi.org/10.1016/j.apcata.2021.118475
  17. Vikar, A., Solt, H. E., Novodarszki, G., Mihalyi, M. R., Barthos, R., Domjan, A., Hancsok, J., Valyon, J., and Lonyi, F., "A study of the mechanism of triglyceride hydrodeoxygenation over alumina-supported and phosphatized-alumina-supported Pd catalysts," J. Catal., 404, 67-79 (2021). https://doi.org/10.1016/j.jcat.2021.08.052
  18. Xia, Q., Xia, Y., Xi, J., Liu, X., Zhang, Y., Guo, Y., and Wang, Y., "Selective one-pot production of high-grade diesel-range alkanes from furfural and 2-Methylfuran over Pd/NbOPO4," ChemSusChem, 10(4), 747-753 (2017). https://doi.org/10.1002/cssc.201601522
  19. Yeletsky, P. M., Kukushkin, R. G., Yakovlev, V. A., and Chen, B. H., "Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components - aromatics and isomerized alkanes," Fuel, 278, 118255 (2020). https://doi.org/10.1016/j.fuel.2020.118255
  20. Nie, R., Yang, H., Zhang, H., Yu, X., Lu, X., Zhou, D., and Xia, Q., "Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles," Green Chem., 19(13), 3126-3134 (2017). https://doi.org/10.1039/c7gc00531h
  21. Liu, X., Xu, L., Xu, G., Jia, W., Ma, Y., and Zhang, Y., "Selective Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols or Cyclohexanes over Magnetic CoNx@NC Catalysts under Mild Conditions," ACS Catal., 6(11), 7611-7620 (2016). https://doi.org/10.1021/acscatal.6b01785
  22. Zhou, M., Ye, J., Liu, P., Xu, J., and Jiang, J., "Water-Assisted Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol over Supported Ni and Co Bimetallic Catalysts," ACS Sustain. Chem. Eng., 5(10), 8824-8835 (2017). https://doi.org/10.1021/acssuschemeng.7b01615
  23. Choi, J., Choi, J.-W., Suh, D. J., Ha, J.-M., Hwang, J. W., Jung, H. W., Lee, K.-Y., and Woo, H.-C., "Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods," Energy Convers. Manage., 86(0), 371-378 (2014). https://doi.org/10.1016/j.enconman.2014.04.094
  24. Chaiwong, K., Kiatsiriroat, T., Vorayos, N., and Thararax, C., "Study of bio-oil and bio-char production from algae by slow pyrolysis," Biomass Bioenergy, 56, 600-606 (2013). https://doi.org/10.1016/j.biombioe.2013.05.035
  25. Elliott, D. C., "Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels," Algal Research, 13, 255-263 (2016). https://doi.org/10.1016/j.algal.2015.12.002
  26. Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P. B., and Resasco, D. E., "Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts," J. Catal., 277(1), 1-13 (2011). https://doi.org/10.1016/j.jcat.2010.10.005
  27. Park, S., Kannapu, H. P. R., Jeong, C., Kim, J., and Suh, Y.-W., "Highly Active Mesoporous Cu-Al2O3 Catalyst for the Hydrodeoxygenation of Furfural to 2-methylfuran," ChemCat Chem, 12(1), 105-111 (2020). https://doi.org/10.1002/cctc.201901312
  28. Saha, B., Bohn, C. M., and Abu-Omar, M. M., "Zinc-Assisted Hydrodeoxygenation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Dimethylfuran," ChemSusChem, 7(11), 3095-3101 (2014). https://doi.org/10.1002/cssc.201402530
  29. Corma, A., de la Torre, O., and Renz, M., "Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: Catalysts and process variables," Energy Environ. Sci., 5(4), 6328-6344 (2012). https://doi.org/10.1039/c2ee02778j
  30. Ishigaki, A., and Shono, T., "The cationic oligomerization of 2-methylfuran and the characteristics of the oligomers," Bull. Chem. Soc. Jpn., 47(6), 1467-1470 (1974). https://doi.org/10.1246/bcsj.47.1467
  31. Eftax, D. S. P., and Dunlop, A. P., "Hydrolysis of simple furans. Products of secondary condensation," J. Org. Chem., 30(4), 1317-1319 (1965). https://doi.org/10.1021/jo01015a552
  32. Corma, A., de la Torre, O., Renz, M., and Villandier, N., "Production of high-quality diesel from biomass waste products," Angew. Chem. Int. Ed., 50(10), 2375-2378 (2011). https://doi.org/10.1002/anie.201007508
  33. Corma, A., de la Torre, O., and Renz, M., "High-quality diesel from hexose- and pentose-derived biomass platform molecules," ChemSusChem, 4(11), 1574-1577 (2011). https://doi.org/10.1002/cssc.201100296
  34. Yati, I., Yeom, M., Choi, J.-W., Choo, H., Suh, D. J., and Ha, J.-M., "Water-promoted selective heterogeneous catalytic trimerization of xylose-derived 2-methylfuran to diesel precursors," Appl. Catal., A, 495(0), 200-205 (2015). https://doi.org/10.1016/j.apcata.2015.02.002
  35. Kwon, J. S., Choo, H., Choi, J.-W., Jae, J., Jin Suh, D., Young Lee, K., and Ha, J.-M., "Condensation of pentose-derived furan compounds to C15 fuel precursors using supported phosphotungstic acid catalysts: Strategy for designing heterogeneous acid catalysts based on the acid strength and pore structures," Appl. Catal., A, 570, 238-244 (2019). https://doi.org/10.1016/j.apcata.2018.10.025
  36. Balakrishnan, M., Sacia, E. R., and Bell, A. T., "Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives," ChemSusChem, 7(10), 2796-2800 (2014). https://doi.org/10.1002/cssc.201402764
  37. Knothe, G., "Biodiesel and renewable diesel: A comparison," Prog. Energy Combust. Sci., 36(3), 364-373 (2010). https://doi.org/10.1016/j.pecs.2009.11.004
  38. Dwiatmoko, A. A., Zhou, L., Kim, I., Choi, J.-W., Suh, D. J., and Ha, J.-M., "Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts," Catal. Today, 265, 192-198 (2016). https://doi.org/10.1016/j.cattod.2015.08.027
  39. Dwiatmoko, A. A., Seo, J., Choi, J.-W., Suh, D. J., Jae, J., and Ha, J.-M., "Improved activity of a CaCO3-supported Ru catalyst for the hydrodeoxygenation of eugenol as a model lignin-derived phenolic compound," Catal. Commun., 127, 45-50 (2019). https://doi.org/10.1016/j.catcom.2019.04.024
  40. Kim, H., Yang, S., Lim, Y. H., Ha, J.-M., and Kim, D. H., "Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin," J. Hazard. Mater., 423, 126525 (2022). https://doi.org/10.1016/j.jhazmat.2021.126525
  41. Shu, R., Lin, B., Zhang, J., Wang, C., Yang, Z., and Chen, Y., "Efficient catalytic hydrodeoxygenation of phenolic compounds and bio-oil over highly dispersed Ru/TiO2," Journal of Fuel processing and technology, 184, 12-18 (2019). https://doi.org/10.1016/j.fuproc.2018.11.004
  42. Lee, E. H., Park, R.-s., Kim, H., Park, S. H., Jung, S.-C., Jeon, J.-K., Kim, S. C., and Park, Y.-K., "Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials," J. Ind. Eng. Chem., 37, 18-21 (2016). https://doi.org/10.1016/j.jiec.2016.03.019
  43. Wang, G.-H., Cao, Z., Gu, D., Pfander, N., Swertz, A.-C., Spliethoff, B., Bongard, H.-J., Weidenthaler, C., Schmidt, W., Rinaldi, R., and Schuth, F., "Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics," Angew. Chem. Int. Ed., 55(31), 8850-8855 (2016). https://doi.org/10.1002/anie.201511558
  44. Luo, J., Yun, H., Mironenko, A. V., Goulas, K., Lee, J. D., Monai, M., Wang, C., Vorotnikov, V., Murray, C. B., Vlachos, D. G., Fornasiero, P., and Gorte, R. J., "Mechanisms for High Selectivity in the Hydrodeoxygenation of 5-Hydroxymethylfurfural over PtCo Nanocrystals," ACS Catal., 6(7), 4095-4104 (2016). https://doi.org/10.1021/acscatal.6b00750
  45. Resende, K. A., Braga, A. H., Noronha, F. B., and Hori, C. E., "Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts," Appl. Catal., B, 245, 100-113 (2019). https://doi.org/10.1016/j.apcatb.2018.12.040
  46. Koike, N., Hosokai, S., Takagaki, A., Nishimura, S., Kikuchi, R., Ebitani, K., Suzuki, Y., and Oyama, S. T., "Upgrading of pyrolysis bio-oil using nickel phosphide catalysts," J. Catal., 333, 115-126 (2016). https://doi.org/10.1016/j.jcat.2015.10.022
  47. Fang, H., Zheng, J., Luo, X., Du, J., Roldan, A., Leoni, S., and Yuan, Y., "Product tunable behavior of carbon nanotubessupported Ni-Fe catalysts for guaiacol hydrodeoxygenation," Appl. Catal., A, 529, 20-31 (2017). https://doi.org/10.1016/j.apcata.2016.10.011
  48. Li, Y., Zhang, C., Liu, Y., Tang, S., Chen, G., Zhang, R., and Tang, X., "Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation," Fuel, 189, 23-31 (2017). https://doi.org/10.1016/j.fuel.2016.10.047
  49. Yang, F., Libretto, N. J., Komarneni, M. R., Zhou, W., Miller, J. T., Zhu, X., and Resasco, D. E., "Enhancement of m-Cresol Hydrodeoxygenation Selectivity on Ni Catalysts by Surface Decoration of MoOx Species," ACS Catal., 9(9), 7791-7800 (2019). https://doi.org/10.1021/acscatal.9b01285
  50. Li, J., Zhang, J., Wang, S., Xu, G., Wang, H., and Vlachos, D. G., "Chemoselective Hydrodeoxygenation of Carboxylic Acids to Hydrocarbons over Nitrogen-Doped Carbon-Alumina Hybrid Supported Iron Catalysts," ACS Catal., 9(2), 1564-1577 (2019). https://doi.org/10.1021/acscatal.8b04967
  51. Dwiatmoko, A. A., Lee, S., Ham, H. C., Choi, J.-W., Suh, D. J., and Ha, J.-M., "Effects of carbohydrates on the hydrodeoxygenation of lignin-derived phenolic compounds," ACS Catal., 5(1), 433-437 (2015). https://doi.org/10.1021/cs501567x
  52. Luo, W., Cao, W., Bruijnincx, P. C. A., Lin, L., Wang, A., and Zhang, T., "Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules," Green Chem., 21(14), 3744-3768 (2019). https://doi.org/10.1039/c9gc01216h
  53. de Souza, P. M., Rabelo-Neto, R. C., Borges, L. E. P., Jacobs, G., Davis, B. H., Sooknoi, T., Resasco, D. E., and Noronha, F. B., "Role of Keto Intermediates in the Hydrodeoxygenation of Phenol over Pd on Oxophilic Supports," ACS Catal., 5(2), 1318-1329 (2015). https://doi.org/10.1021/cs501853t
  54. Zhao, C., and Lercher, J. A., "Upgrading Pyrolysis Oil over Ni/HZSM-5 by Cascade Reactions," Angew. Chem. Int. Ed., 51(24), 5935-5940 (2012). https://doi.org/10.1002/anie.201108306
  55. Guzman, A., Torres, J. E., Prada, L. P., and Nunez, M. L., "Hydroprocessing of crude palm oil at pilot plant scale," Catal. Today, 156(1), 38-43 (2010). https://doi.org/10.1016/j.cattod.2009.11.015
  56. Romero, Y., Richard, F., and Brunet, S., "Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism," Appl. Catal., B, 98(3), 213-223 (2010). https://doi.org/10.1016/j.apcatb.2010.05.031
  57. Dabros, T. M. H., Gaur, A., Pintos, D. G., Sprenger, P., Hoj, M., Hansen, T. W., Studt, F., Gabrielsen, J., Grunwaldt, J.-D., and Jensen, A. D., "Influence of H2O and H2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl2O4 for hydrodeoxygenation of ethylene glycol," Appl. Catal., A, 551, 106-121 (2018). https://doi.org/10.1016/j.apcata.2017.12.008
  58. Liu, G., Robertson, A. W., Li, M. M.-J., Kuo, W. C., Darby, M. T., Muhieddine, M. H., Lin, Y.-C., Suenaga, K., Stamatakis, M., and Warner, J. H., "MoS 2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction," Nat. Chem., 9(8), 810 (2017). https://doi.org/10.1038/nchem.2740
  59. Tian, S., Wang, Z., Gong, W., Chen, W., Feng, Q., Xu, Q., Chen, C., Chen, C., Peng, Q., Gu, L., Zhao, H., Hu, P., Wang, D., and Li, Y., "Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru1/mpg-C3N4 Catalyst," Journal of the American Chemical Society, 140(36), 11161-11164 (2018). https://doi.org/10.1021/jacs.8b06029
  60. Zhang, F., Zheng, S., Xiao, Q., Zhong, Y., Zhu, W., Lin, A., and Samy El-Shall, M., "Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water," Green Chem., 18(9), 2900-2908 (2016). https://doi.org/10.1039/c5gc02615f
  61. Zhao, X., Wu, X., Wang, H., Han, J., Ge, Q., and Zhu, X., "Effect of Strong Metal-Support Interaction of Pt/TiO2 on Hydrodeoxygenation of m-Cresol," ChemistrySelect, 3(37), 10364-10370 (2018). https://doi.org/10.1002/slct.201801147
  62. Tan, Q., Wang, G., Long, A., Dinse, A., Buda, C., Shabaker, J., and Resasco, D. E., "Mechanistic analysis of the role of metal oxophilicity in the hydrodeoxygenation of anisole," J. Catal., 347, 102-115 (2017). https://doi.org/10.1016/j.jcat.2017.01.008
  63. Yoon, J. S., Lee, T., Choi, J.-W., Suh, D. J., Lee, K., Ha, J.-M., and Choi, J., "Layered MWW zeolite-supported Rh catalysts for the hydrodeoxygenation of lignin model compounds," Catal. Today, 293, 142-150 (2017). https://doi.org/10.1016/j.cattod.2016.10.033
  64. Gamliel, D. P., Baillie, B. P., Augustine, E., Hall, J., Bollas, G. M., and Valla, J. A., "Nickel impregnated mesoporous USY zeolites for hydrodeoxygenation of anisole," Journal of Microporous and Mesoporous Materials, 261, 18-28 (2018). https://doi.org/10.1016/j.micromeso.2017.10.027
  65. Roldugina, E. A., Naranov, E. R., Maximov, A. L., and Karakhanov, E. A., "Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts," Appl. Catal., A, 553, 24-35 (2018). https://doi.org/10.1016/j.apcata.2018.01.008
  66. Xu, X., Li, Y., Gong, Y., Zhang, P., Li, H., and Wang, Y., "Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade," Journal of the American Chemical Society, 134(41), 16987-16990 (2012). https://doi.org/10.1021/ja308139s
  67. Long, J. X., Shu, S. Y., Wu, Q. Y., Yuan, Z. Q., Wang, T. J., Xu, Y., Zhang, X. H., Zhang, Q., and Ma, L. L., "Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO," Energy Convers. Manage., 105, 570-577 (2015). https://doi.org/10.1016/j.enconman.2015.08.016
  68. Nimmanwudipong, T., Aydin, C., Lu, J., Runnebaum, R., Brodwater, K., Browning, N., Block, D., and Gates, B., "Selective Hydrodeoxygenation of Guaiacol Catalyzed by Platinum Supported on Magnesium Oxide," Catal. Lett., 142(10), 1190-1196 (2012). https://doi.org/10.1007/s10562-012-0884-3
  69. Nimmanwudipong, T., Runnebaum, R., Block, D., and Gates, B., "Catalytic Reactions of Guaiacol: Reaction Network and Evidence of Oxygen Removal in Reactions with Hydrogen," Catal. Lett., 141(6), 779-783 (2011). https://doi.org/10.1007/s10562-011-0576-4
  70. Bergvall, N., Sandstrom, L., Weiland, F., and Ohrman, O. G. W., "Corefining of Fast Pyrolysis Bio-Oil with Vacuum Residue and Vacuum Gas Oil in a Continuous Slurry Hydrocracking Process," Energy Fuels, 34(7), 8452-8465 (2020). https://doi.org/10.1021/acs.energyfuels.0c01322
  71. Masoumi, S., and Dalai, A. K., "NiMo carbide supported on algal derived activated carbon for hydrodeoxygenation of algal biocrude oil," Energy Convers. Manage., 231, 113834 (2021). https://doi.org/10.1016/j.enconman.2021.113834