DOI QR코드

DOI QR Code

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell

고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향

  • Received : 2023.09.01
  • Accepted : 2023.12.21
  • Published : 2024.02.01

Abstract

The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

고분자 전해질 연료전지(PEMFC) 내구성에 촉매 지지체 내구성이 미치는 영향이 크다. 촉매 지지체의 가속 내구 평가는 높은 전압(1.0~1.5 V)에서 진행되어 촉매층의 촉매와 이오노머 바인더도 같이 열화되어 지지체 내구성 평가에 방해가 된다. 내구성 평가대상인 지지체가 더 열화되는 조건을 찾고자 기존의 프로토콜 (DOE 프로토콜)을 개선하였다. 상대습도를 35% 낮추고 전압변화 횟수를 감소시킨 프로토콜 (MDOE)을 개발하였다. 1.0 ↔ 1.5 V 전압변화 사이클 반복 후에 촉매 비활성도 (MA)와 전기화학적 활성면적 (ECSA), 전기이중층 용량 (DLC), Pt 용해와 입자 성장 등을 분석하였다. 비활성도 감소 40% 도달하는데 MDOE 프로토콜은 500 사이클 밖에 안되어 DOE방법보다 전압변화 횟수를 감소시키면서 카본 지지체 열화를 DOE 프로토콜보다 50% 증가시킬 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20015756).

References

  1. Gittleman, C. S., Kongkanand, A., Masten, D. and Gu, W., "Materials Research and Development Focus Areas for Low Cost Automotive Proton-exchange Membrane Fuel Cells," Curr. Opin. Electrochem., 18, 81(2019).
  2. Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R., Ahluwalia, R. K., Cullen, D. A., More, K. L., Weber, A. Z. and Myers, D. J., "Recent Developments in Catalyst-related PEM Fuel Cell Durability," Curr. Opin. Electrochem., 21, 192 (2020).
  3. Marcinkoski, J., Vijayagopal, R., Adams, J., James, B., Kopasz, J. and Ahluwalia, R., "Hydrogen Class 8 Long Haul Truck Targets. Subsection of the Electrified Powertrain Roadmap. Technical Targets for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks. https://hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf.
  4. Borup, R. et al., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107, 3904(2007).
  5. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc., 141(10), 2659-2668(1994). https://doi.org/10.1149/1.2059162
  6. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membrane elctrode-Assembly," J. Power Sources, 159(1), 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  7. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164(1), 126-133(2006). https://doi.org/10.1016/j.jpowsour.2006.09.069
  8. Sharma, R. and Andersen, S. M., "An Opinion on Catalyst Degradation Mechanisms During Catalyst Support Focused Accelerated Stress Test (AST) for Proton Exchange Membrane Fuel Cells (PEMFCs)," Applied Catalysis B: Environmental, 239, 636-643(2018). https://doi.org/10.1016/j.apcatb.2018.08.045
  9. Kaddouri, A. E., Flandin, L. and Bas, C., "Chemical Degradation of PFSA Ionomer Binder in PEMFC's Catalyst Layer," Int. J. Hydrogen Energy, 43, 15386-15397(2018). https://doi.org/10.1016/j.ijhydene.2018.06.049
  10. Morawietz, T., Handl, M., Oldani, C., Gazdzicki, P., Hunger, J., Wilhelm, F., Blake, J., Friedrich, K. A. and Hiesgen, R., "High-Resolution Analysis of Ionomer Loss in Catalytic Layers after Operation," J. of Electrochem. Soc., 165(6), F3139-F3147(2018). https://doi.org/10.1149/2.0151806jes
  11. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "Doe Cell Component Accelerated Stress Test Protocols for Pem Fuel Cells."
  12. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  13. Kim, M., Jung, N., Eom, K. S., Yoo, S. J., Kim, J. Y., Jang, J. H., Kim, H. J., Hong, B. K. and Cho, E. A., "Effects of Anode Flooding on the Performance Degradation of Polymer Electrolyte Membrane Fuel Cells," J. of Power Sources, 266, 332-340(2014). https://doi.org/10.1016/j.jpowsour.2014.04.092
  14. Yoo, D. G., Kim, H. S., Oh, S. H. and Park, K. P., "Durability Evaluation of Cathode Open-type Proton Exchange Membrane Fuel Cells Stacks," Korean Chem. Eng. Res., 61(1), in print(2023).
  15. Yumiya, H., Kizaki, M. and Asai, H., "Toyota Fuel Cell System (TFCS)," World Electric Vehicle Journal, 7, 85(2015).
  16. Banham, D. and Ye, S., "Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective," ACS Energy Lett., 2, 629(2017).
  17. Oh, S. H., Yoo, D. G., Kim, M. H., Park, J. Y. and Park, K. P., "Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC," Korean Chem. Eng. Res., 61(1), in print(2023).
  18. Kim, T., Lee, H., Sim, W., Lee, J., Kim, S., Lim, T. and Park, K., "Degradation of Proton Exchange Membrane by Pt Dissolved/deposited in Fuel Cells," Korean J. Chem. Eng., 26(5), 1265-1271 (2009). https://doi.org/10.1007/s11814-009-0212-9
  19. Ahluwalia, R. K., Papadias, D. D., Kariuki, N. N., Peng, J.-K., Wang, X., Tsai, Y., Graczyk, D. G. and Myers, D. J., "Potential Dependence of Pt and Co Dissolution from Platinum-cobalt Alloy PEFC Catalysts Using Time-resolved Measurements," J. Electrochem. Soc., 165, F3024(2018).
  20. Sharma, R. and Andersen, S. M., "Membrane Fuel Cell Catalyst Layers during an Accelerated Stress," ACS Catal, 8, 3424-3434 (2018). https://doi.org/10.1021/acscatal.8b00002