• Title/Summary/Keyword: Carbon oxide

Search Result 1,158, Processing Time 0.034 seconds

Mechanical Properties and Oxidation Behaviors of Boron Oxide Implanted Carbon Fibers

  • Noh, Baek-Nam;Kim, Jung-Il;JooN, Hyeok-Jong
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 2000
  • This paper describes the mechanical properties and oxidation resistance of carbon fibers with and without additions of boron oxide additives, and describes the changes in the properties resulting from increased heat treatment temperature (HTT) of the fibers. Carbon fibers in this experiment were heat treated up to $2800^{\circ}C$ each with and without boron oxide treated on the surface of fibers. In the case of boron oxide added carbon fibers, they do not show the improvement of tensile strength and modulus compared to those of no treated carbon fibers below $2200^{\circ}C$ since they are doped substitutionally with boron above $2600^{\circ}C$, which accelerate the graphitization of carbon fibers. Boron oxide implanted carbon fibers showed high resistance to oxidation, however, when carbon fibers were heat treated below $2200^{\circ}C$, they showed almost the same trend of air oxidation.

  • PDF

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Influence of Magnesium Oxide on Carbon Dioxide Adsorption Behaviors of Mesoporous Carbons (메조포어러스카본의 마그네슘 옥사이드의 처리에 따른 이산화탄소 흡착 거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.221.2-221.2
    • /
    • 2011
  • In this study, we prepared the magnesium oxide decorated ordered mesoporous carbons processed by the reduction of magnesium oxide precursor on the CMK-3 surfaces in order to investigate the characterization and the effect on their carbon dioxide adsorption behaviors. The magnesium contents of the prepared samples were characterized using XPS. The textural properties of the prepared samples were investigated by $N_2$/77 K adsorption isotherms by BET equation. The carbon dioxide adsorption capacities of the prepared samples were investigated by the amounts of carbon dioxide adsorptions at 298 K and 1.0 atm. The results showed that the magnesium oxide on the CMK-3 surface enhanced interaction between carbon dioxide and adsorbents. Consequently, it was found that the magnesium oxide led to an increase in the carbon dioxide adsorption capacity of the CMK-3.

  • PDF

Synthesis of the Terpolymers of Propylene Oxide, Cyclohexene Oxide, and Carbon dioxide (Propylene Oxide와 Cyclohexene Oxide와 CO2의 삼원 공중합체의 합성)

  • Lee, Yoon-Bae;Sung, Un-Gyung;Park, Hee-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1027-1031
    • /
    • 2011
  • In order to use carbon dioxide, one of the green house gases, terpolymers have been synthesized from propylene oxide, cyclohexene oxide, and carbon dioxide with zinc glutarate as catalyst. The polymers have been investigated with FT-IR, $^1H$-NMR, DSC. The glass transition temperatures of terpolymers are dependendent upon mass ratio of the poly(alkylene carbonate by Fox equation.

A study on measurement of particulate matter, nitrogen oxide and carbon oxide from main engine in training ship

  • Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.792-798
    • /
    • 2013
  • In this study, we have carried out measurement for exhaust emissions such as particulate matter (PM), nitrogen oxide and carbon oxide from main engines installed on the training ships, HANBADA and HANNARA, of Korea Maritime University. In particular, we considered the two conditions; at arrivals/departures and at constant speed of about 160 rpm. The result showed that the concentration of PM at the ship arrival was 2.41mg/m3. On the other hand, when the ship is on the navigation condition, the concentration of PM was 1.34 mg/m3. The concentrations of nitrogen oxide and carbon oxide were measured in the range of 1,120~1,600 ppm and 320~1,450 ppm at the arrival and departure at the port. Under constant speed condition, the concentrations of nitrogen oxide and carbon oxide were 913~1,470 ppm and 73~460 ppm, respectively. Generally, the concentrations of exhaust emissions under the arrivals and departures were higher than that of constant speed condition. These results imply that the ship operation skill to prevent a sudden load change of main engine is needed during the arrival or departure. In addition, it means that the difference of exhaust emissions according to navigation conditions has to be considered when the reduction technologies of air pollutants from ships are developed.

Control of size and physical properties of graphene oxide by changing the oxidation temperature

  • Kang, Dong-Woo;Shin, Hyeon-Suk
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.39-43
    • /
    • 2012
  • The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of $20^{\circ}C$, $27^{\circ}C$ and $35^{\circ}C$ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 ${\mu}m$ at $20^{\circ}C$, 1.24 and 10.5 ${\mu}m$ at $27^{\circ}C$, and 1.18 and 8.5 ${\mu}m$ at $35^{\circ}C$. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.

Electrochemical Enhancement of Carbon Felt Electrode for Vanadium Redox Flow Battery with Grephene Oxide (산화그레핀을 이용한 바나듐레독스흐름전지용 카본펠트전극의 표면개질을 통한 전기화학적 활성개선)

  • LEE, KEON JOO;KIM, SUNHOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Carbon felt electrode for the vanadium redox-flow battery (VRFB) has been studied to see the effect of grephene oxide (GO) treatment on the surface of the carbon felt electrode. In this paper, surface of carbon felt electrodes were treated with various concentrations of grephene oxide. Electrochemical analysis, cyclic voltammetry (CV), was performed to investigate redox characteristics as electrode for VRFB. Also the effect of GO on the introduction of functional group on the surface of carbon felt electrodes were investigated using X-ray photoelectron spectroscopy (XPS), which discovered increase in the overall functional group content on the surface of carbon felts.

Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution

  • Lee, Dong Su;Park, Yung Woo
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.248-253
    • /
    • 2012
  • Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

Effects of Manganese and Carbon on the HAZ Microstructural Evolution in Titanium Oxide Steel (티타늄 산화물강 열영향부 조직변태에 미치는 망간 및 탄소의 영향)

  • 방국수
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.78-84
    • /
    • 2004
  • Effects of manganese and carbon on the HAZ microstructural evolution in 500㎫ grade titanium oxide steels were investigated. Microstructural evolution primarily depends on supercooling. When cooled at 3$^{\circ}C$/s in 0.15%C-1.5%Mn steel, grain boundary and Widmanst tten ferrite formed at 640 and 62$0^{\circ}C$, respectively, followed by competitive formation of acicular ferrite and upper bainite inside of grain at 58$0^{\circ}C$. With an increase of manganese, degree of supercooling increased while critical cooling rate for the formation of gain boundary ferrite decreased. Consequently, the amount of acicular ferrite in HAZ was decreased in 2.0%Mn after initial increase in 1.0 and 1.5%Mn. Therefore, optimum supercooling should be maintained to accelerate acicular ferrite formation in titanium oxide steels. Low carbon steel, 0.11%C-1.5%Mn, showed larger amount of acicular ferrite than higher carbon steel because of effectiveness of diffusionless transformation in low carbon steel.