DOI QR코드

DOI QR Code

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2010.03.03
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Keywords

References

  1. Audrey-Flore, N.; Agnes, B.; Jean-Michel, S.; Delphine, T.; Valerie, C.; Gerard, C. J. Hazard. Mater. 2009, 166, 1043. https://doi.org/10.1016/j.jhazmat.2008.11.109
  2. Azetsu-Scott, K.; Yeats, P.; Wohlgeschaffen, G.; Dalziel, J.; Niven, S.; Lee, K. Mar. Environ. Res. 2007, 63, 146. https://doi.org/10.1016/j.marenvres.2006.08.001
  3. Dousova, B.; Kolousek, D.; Kovanda, F.; Machovic, V.; Novotna, M. Appl. Clay Sci. 2005, 28, 31. https://doi.org/10.1016/j.clay.2004.02.001
  4. Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M. A. M.; Crespo, J. G. Desalination 2006, 199, 405. https://doi.org/10.1016/j.desal.2006.03.091
  5. Bora, D.; Senapati, K. Fuel. 2006, 85, 1929. https://doi.org/10.1016/j.fuel.2006.01.012
  6. Qu, J. J. Environ. Sci. 2008, 20, 1. https://doi.org/10.1016/S1001-0742(08)60001-7
  7. Blocher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N. K.; Matis, K.A. Water Res. 2003, 37, 4018. https://doi.org/10.1016/S0043-1354(03)00314-2
  8. Trivunac, K.; Stevanovic, S. Desalination 2006, 198, 282. https://doi.org/10.1016/j.desal.2006.01.028
  9. Juttner, K.; Galla, U.; Schmieder, H. Electrochim. Acta. 2000, 45, 2575. https://doi.org/10.1016/S0013-4686(00)00339-X
  10. Ritchie, S. M. C.; Bhattacharyya, D. J. Hazard. Mater. 2002, 92, 21. https://doi.org/10.1016/S0304-3894(01)00370-3
  11. Zamboulis, D.; Pataroudi, S. I.; Zouboulis, A. I.; Matis, K. A. Desalination 2004, 162, 159. https://doi.org/10.1016/S0011-9164(04)00039-6
  12. Neville, M. D.; Jones, C. P.; Turner, A. D. Progress in Nuclear Energy Global Environmental and Nuclear Energy Systems-2 1998, 32, 397.
  13. Arundhati, P.; Suchhanda, G.; Paul, A. K. Bioresource Technol. 2006, 97, 1253. https://doi.org/10.1016/j.biortech.2005.01.043
  14. Wan Ngah, W. S.; Fatinathan, S. Chem. Eng. J. 2008, 143, 62. https://doi.org/10.1016/j.cej.2007.12.006
  15. Ibanez, J. P.; Umetsu, Y. Hydrometallurgy. 2002, 64, 89. https://doi.org/10.1016/S0304-386X(02)00012-9
  16. Pandey, A. K.; Pandey, S. D.; Misra, V.; Devib, S. J. Hazard. Mater. 2003, 98, 177. https://doi.org/10.1016/S0304-3894(02)00316-3
  17. Moreno-Garrido, I.; Campana, O.; Lubian, L. M.; Blasco, J. Marine Pollution Bulletin 4th International Conference on Marine Pollution and Ecotoxicolog. 2005, 51, 823.
  18. Li, Y. H.; Zhu, Y. Q.; Zhao, Y. M.; Wu, D. H.; Luan, Z. K. Diamond Relat. Mater. 2006, 15, 90. https://doi.org/10.1016/j.diamond.2005.07.004
  19. Simon-Deckers, A.; Gouget, B.; Mayne-L'Hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carriere, M. Toxicol. 2008, 253, 137. https://doi.org/10.1016/j.tox.2008.09.007
  20. Hyung, H.; Fortner, J. D.; Hughes, J. B.; Kim, J. H. Environ. Sci. Technol. 2007, 41, 179. https://doi.org/10.1021/es061817g
  21. Li, Y.; Liu, F.; Xia, B.; Du, Q.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y. J. Hazard. Mater. 2010, 177, 876. https://doi.org/10.1016/j.jhazmat.2009.12.114
  22. Lim, S. F.; Chen, J. P. Appl. Surf. Sci. 2007, 253, 5772. https://doi.org/10.1016/j.apsusc.2006.12.049
  23. Huidong, L.; Zhao, L.; Ting, L.; Xiao, X.; Zhihui, P.; Le, D. Bioresource Technol. 2008, 99, 6271. https://doi.org/10.1016/j.biortech.2007.12.002
  24. Rocher, V.; Siaugue, J. M.; Cabuil, V.; Bee, A. Water Res. 2008, 42, 1290. https://doi.org/10.1016/j.watres.2007.09.024
  25. Chen, J. P.; Tendeyong, F.; Yiacoumi, S. Environ. Sci. Technol. 1997, 21, 1433.

Cited by

  1. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst vol.48, pp.23, 2013, https://doi.org/10.1007/s10853-013-7645-6