Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.4.248

Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution  

Lee, Dong Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Park, Yung Woo (Department of Physics and Astronomy, Seoul National University)
Publication Information
Carbon letters / v.13, no.4, 2012 , pp. 248-253 More about this Journal
Abstract
Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.
Keywords
carbon nanotubes; dielectrophoresis; dielectrophoretic filterings; pearl chain formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 59 (1991). http://dx.doi.org/doi:10.1038/354056a0.   DOI
2 Dekker C. Carbon nanotubes as molecular quantum wires. Physics Today, 52, 22 (1999). http://dx.doi.org/10.1063/1.882658.   DOI   ScienceOn
3 Dresselhaus MS, Dresselhaus G, Avouris P. Carbon nanotubes: synthesis, structural properties and applications, Springer, New York (2001).
4 Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.   DOI
5 Derycke V, Martel R, Appenzeller J, Avouris P. Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett, 80, 2773 (2002). http://dx.doi.org/10.1063/1.1467702.   DOI   ScienceOn
6 Nygard J, Cobden DH, Bockrath M, McEuen PL, Lindelof PE. Electrical transport measurements on single-walled carbon nanotubes. Appl Phys A: Mater Sci Process, 69, 297 (1999). http:// dx.doi.org/10.1007/s003390051004.   DOI   ScienceOn
7 Yao Z, Kane CL, Dekker C. High-field electrical transport in single- wall carbon nanotubes. Phys Rev Lett, 84, 2941 (2000). http:// dx.doi.org/10.1103/PhysRevLett.84.2941.   DOI   ScienceOn
8 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233.   DOI   ScienceOn
9 Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005). http://dx.doi.org/10.1038/nature04235.   DOI   ScienceOn
10 Yang H, Heo J, Park S, Song HJ, Seo DH, Byun KE, Kim P, Yoo I, Chung HJ, Kim K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 336, 1140 (2012). http:// dx.doi.org/10.1126/science.1220527.   DOI   ScienceOn
11 Avouris P, Chen ZH, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano. 2007.300.   DOI   ScienceOn
12 Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi. org/10.1038/386474a0.   DOI   ScienceOn
13 Lin YM, Appenzeller J, Avouris P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett, 4, 947 (2004). http://dx.doi.org/10.1021/nl049745j.   DOI   ScienceOn
14 Lee DS, Svensson J, Lee SW, Park YW, Campbell EEB. Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET. J Nanosci Nanotechnol, 6, 1325 (2006). http://dx.doi.org/10.1166/jnn.2006.321.   DOI   ScienceOn
15 Svensson J, Tarakanov Y, Lee DS, Kinaret JM, Park YW, Campbell EEB. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay. Nanotechnology, 19, (2008). http://dx.doi. org/10.1088/0957-4484/19/32/325201.   DOI   ScienceOn
16 Haddon RC, Sippel J, Rinzler AG, Papadimitrakopoulos F. Purification and separation of carbon nanotubes. MRS Bull, 29, 252 (2004). http://dx.doi.org/10.1557/mrs2004.76.   DOI
17 Lee DS, Kim DW, Kim HS, Lee SW, Jhang SH, Park YW, Campbell EEB. Extraction of semiconducting CNTs by repeated dielectrophoretic filtering. Appl Phys A: Mater Sci Process, 80, 5 (2005). http://dx.doi.org/10.1007/s00339-004-2992-4.   DOI
18 Liu HP, Nishide D, Tanaka T, Kataura H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2, (2011). http://dx.doi.org/10.1038/ ncomms1313.   DOI   ScienceOn
19 Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2, 338 (2003). http://dx.doi. org/10.1038/nmat877.   DOI   ScienceOn
20 Yang CM, Park JS, An KH, Lim SC, Seo K, Kim B, Park KA, Han S, Park CY, Lee YH. Selective removal of metallic singlewalled carbon nanotubes with small diameters by using nitric and sulfuric acids. J Phys Chem B, 109, 19242 (2005). http://dx.doi. org/10.1021/jp053245c.   DOI
21 Bezryadin A, Dekker C, Schmid G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett, 71, 1273 (1997). http://dx.doi.org/10.1063/1.119871.   DOI   ScienceOn
22 Amlani I, Rawlett AM, Nagahara LA, Tsui RK. An approach to transport measurements of electronic molecules. Appl Phys Lett, 80, 2761 (2002). http://dx.doi.org/10.1063/1.1469655.   DOI   ScienceOn
23 Pohl HA. Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, Cambridge University Press, Cambridge (1978).
24 Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 294, 1082 (2001). http:// dx.doi.org/10.1126/science.1063821.   DOI   ScienceOn
25 Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721.   DOI   ScienceOn
26 Benedict LX, Louie SG, Cohen ML. Static polarizabilities of single- wall carbon nanotubes. Phys Rev B, 52, 8541 (1995). http:// dx.doi.org/10.1103/PhysRevB.52.8541.   DOI   ScienceOn
27 O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.   DOI   ScienceOn
28 Krupke R, Hennrich F, von Lohneysen H, Kappes MM. Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301, 344 (2003). http://dx.doi.org/10.1126/sci ence.1086534.   DOI   ScienceOn
29 Krupke R, Hennrich F, Kappes MM, Lohneysen HV. Surface conductance induced dielectrophoresis of semiconducting singlewalled carbon nanotubes. Nano Lett, 4, 1395 (2004). http://dx.doi. org/10.1021/nl0493794.   DOI   ScienceOn
30 Ding JW, Yan XH, Cao JX. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B, 66, (2002). http://dx.doi.org/10.1103/PhysRevB.66.073401.   DOI   ScienceOn
31 Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synth Met, 103, 2555 (1999). http://dx.doi.org/10.1016/s0379- 6779(98)00278-1.   DOI   ScienceOn
32 Yu ZH, Brus LE. (n, m) structural assignments and chirality dependence in single-wall carbon nanotube Raman scattering. J Phys Chem B, 105, 6831 (2001). http://dx.doi.org/10.1021/jp010853t.   DOI   ScienceOn
33 Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043 (2002). http://dx.doi.org/10.1016/s0008-6223 (02)00066-0.   DOI   ScienceOn