• 제목/요약/키워드: Carbon nanotube

검색결과 1,681건 처리시간 0.036초

Carbon nanotube based transparent electrodes for flexible displays using liquid crystal devices

  • Shin, Jun-Ho;Lee, H.C.;Lee, J.H.;Park, S.M.;Alegaonkar, P.S.;Yoo, J.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.897-899
    • /
    • 2007
  • Transparent electrodes for a flexible display based on the liquid crystal (LC) were formed by carbon nanotubes (CNTs) on polyethylene terephthalate (PET) substrates. The thin multi wall carbon nanotubes (t-MWNTs) networks for electrodes were obtained by filtration- transfer method from welldispersed CNTs solution.

  • PDF

개별 수직성장된 나노튜브와 금속의 복합 구조체 제작 및 분석 (Fabrication and Analysis of a Free-Standing Carbon Nanotube-Metal Hybrid Nanostructure)

  • 장원석;황준연;한창수
    • 대한기계학회논문집B
    • /
    • 제36권1호
    • /
    • pp.25-29
    • /
    • 2012
  • 탄소나노튜브의 기계적 특성과 금속의 전기적 특성을 이용할 수 있는 나노 복합구조체의 특성은 두 재료 사이의 계면이 중용한 역할을 한다. 본 연구에서는 나노임프린트 패터닝을 이용하여 촉매금속을 패턴하고 이를 이용한 개별 성장된 탄소나노튜브 위에 증기증착법을 이용하여 니켈을 증착한 나노구 조체의 계면을 조사하였다. 이를 위하여 고해상의 투사전자현미경과 3 차원 원자 프로브 분석기를 이용하였다. 탄소나노튜브 위에서 성장된 나노결정의 경우 준 안정 상태인 조밀입방구조의 $Ni_3C$ 를 형성하는 것으로 나타났다. 이러한 특성을 이용한 나노복합체의 응용가능성을 살펴보았다.

촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성 (Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition)

  • 김현진;이임렬
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.458-463
    • /
    • 2002
  • Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성 (Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube)

  • 정용준
    • 한국습지학회지
    • /
    • 제20권4호
    • /
    • pp.410-416
    • /
    • 2018
  • 본 연구는 탄소나노튜브(MWCNT)와 활성탄을 이용한 니켈과 구리의 흡착특성을 평가하였다. 산성조건에서 활성탄의 제거성능이 낮은 반면, MWCNT만 니켈과 구리를 흡착 제거하는데 효율적이었다. MWCNT와 중금속의 흡착반응은 유사 일차반응식을 따랐다. 초기 pH가 중성일 때, 니켈은 MWCNT에 의해 신속히 제거되었고, 활성탄은 4시간에 각각 99.02%와 80.30%를 나타냈다. 또한, 구리이온은 초기 pH가 중성일 때 4시간내에 효율적으로 제거되었다. 흡착제 주입량을 증가함에 따라 pH가 증가하였고, 중금속 제거율도 증가하였다. 또한, 산화 전처리 공정은 MWCNT의 중금속 제거율을 증가시켰다.

나노튜브전극을 사용한 전압전류법에 의한 식물잎에서 살충제 검출 (Detection of Pesticide Thiram in Plant Leafs Using Voltammetric at Nanotube Electrode)

  • 이장현;이수영
    • 한국환경과학회지
    • /
    • 제19권12호
    • /
    • pp.1335-1341
    • /
    • 2010
  • Voltammetric diagnostics of pesticide thiram was studied in plant leafs in vivo fluid with DNA immobilized on a carbon nanotube electrode (DCE). Sensor properties of carbon nanotube (CE) and DNA immobilized nanotube were compared. DCE was more effective than CE in target detecting. The parameters such as pH strength, stripping accumulation, amplitude, and increment potential were examined to find the optimum condition for detection of pesticide thiram in a sesame leaf. The optimized conditions were as follows 550 Hz frequency, 0.15 V amplitude, 0.005 V increment potential, -1.2 V initial potential, 4.78 pH, 500 sec accumulation time. Under optimum condition, the detection limit of thiram was attained at 0.01ng/L.

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.