Browse > Article
http://dx.doi.org/10.17663/JWR.2018.20.4.410

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube  

Jung, Yong-Jun (Department of Environmental Engineering, Catholic University of Pusan)
Publication Information
Journal of Wetlands Research / v.20, no.4, 2018 , pp. 410-416 More about this Journal
Abstract
This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.
Keywords
Activated carbon; Carbon nanotube; Copper; Nickel; Adsorbent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Y., Zeng, X., Liu, Y., Yan, S., Hu, Z., Ni, Y. (2003). Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation. Sep. Puri. Tech., 31(1), pp. 91-95.[https://doi.org/10.1016/S1383-5866(02)00162-4]   DOI
2 Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., Sun, Y. (2013). Sorption of metal cations on layered double hydroxides. Col. and Surf. A: Physicochemical and Engineering Aspects, 433, pp. 122-131. [https://doi.org/10.1016/j.colsurfa.2013.05.006]   DOI
3 Lohani, M. B., Singh, A., Rupainwar, D. C., Dhar, D. N. (2008). Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. J. of Haz. mat., 159(2), pp. 626-629.[https://doi.org/10.1016/j.jhazmat.2008.02.072]   DOI
4 Malamis, S., Katsou, E., Kosanovic, T., Haralambous, K. J. (2012). Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater. Sep. Sci. Tech., 47(7), pp. 983-996.[https://doi.org/10.1080/01496395.2011.645983]   DOI
5 Nadakavukaren, A., 2011, Our global environment: A health perspective. Waveland Press.[ISBN-13:978-1577666868]
6 Rao, M. M., Ramesh, A., Rao, G. P. C., Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. of Haz. mat., 129(1), pp. 123-129.[https://doi.org/10.1016/j.jhazmat.2005.08.018]   DOI
7 Rengaraj, S., Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Wat. Res., 36(7), pp. 1783-1793. [https://doi.org/10.1016/S0043-1354(01)00380-3]   DOI
8 Soco, E., Kalembkiewicz, J. (2013). Adsorption of nickel (II) and copper (II) ions from aqueous solution by coal fly ash. J. of Env. Chem. Eng., 1(3), pp. 581-588.[https://doi.org/10.1016/j.jece.2013.06.029]   DOI
9 Ritchie, S. M. C., Bhattacharyya, D. (2002). Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation. J. of Haz. mat., 92(1), pp. 21-32.[https://doi.org/10.1016/S0304-3894(01)00370-3]   DOI
10 Salam, M. A., Al-Zhrani, G., Kosa, S. A. (2012). Simultaneous removal of copper (II), lead (II), zinc (II) and cadmium (II) from aqueous solutions by multi-walled carbon nanotubes. Comptes Rendus Chimie, 15(5), pp. 398-408.[https://doi.org/10.1016/j.crci.2012.01.013]   DOI
11 Young, C. A., Jordan, T. S. (1995). Cyanide remediation: current and past technologies. In Proceedings of the 10th Annual Conference on Hazardous Waste Research (pp. 104-129), Kansas State University: Manhattan, KS.
12 Tofighy, M. A., Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. of Haz. Mat., 185(1), pp. 140-147. [https://doi.org/10.1016/j.jhazmat.2010.09.008]   DOI
13 Tunay, O., Kabdasli, N. I. (1994). Hydroxide precipitation of complexed metals. Wat. Res., 28(10), pp. 2117-2124. [https://doi.org/10.1016/0043-1354(94)90022-1]   DOI
14 Wahi, R., Ngaini, Z., Jok, V. U. (2009). Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Applied Sci. J., 5, pp. 84-91.[ISSN 1818-4952]
15 Abou-Elela, S. I., Ibrahim, H. S., Abou-Taleb, E. (2008). Heavy metal removal and cyanide destruction in the metal plating industry: An integrated approach from Egypt. The Environmentalist, 28(3), pp. 223-229. [https://doi.org/10.1007/s10669-007-9132-6]   DOI
16 Aksu, Z., Calik, A. (1999). Adsorption of iron (III)-cyanide complex ions to granular activated carbon. J. of Envi. Sci. & Health Part A, 34(10), pp. 2087-2103. [https://doi.org/10.1080/10934529909376949]   DOI
17 Amarasinghe, B. M. W. P. K., Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering J., 132(1), pp. 299-309.[https://doi.org/10.1016/j.cej.2007.01.016]   DOI
18 Barros, F. C., Sousa, F. W., Cavalcante, R. M., Carvalho, T. V., Dias, F. S., Queiroz, D. C., Nascimento, R. F. (2008). Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. Clean-Soil, Air, Wat., 36(3), pp. 292-298. [https://doi.org/10.1002/clen.200700004]   DOI
19 Bernard, E., Jimoh, A., Odigure, J. O. (2013). Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. of Chem. Sci., 3(8), pp. 3-9.[ISSN 2231-606X]
20 Chung, S., Kim, S., Kim, J. O., Chung, J. (2014). Feasibility of Combining Reverse Osmosis-Ferrite Process for Reclamation of Metal Plating Wastewater and Recovery of Heavy Metals. Ind. & Eng. Chem. Res., 53(39), pp. 15192-15199.[https://doi.org/10.1021/ie502421b]   DOI
21 Dabrowski, A. (2001). Adsorption-from theory to practice. Advances in col. and inter. sci., 93(1), pp. 135-224. [https://doi.org/10.1016/S0001-8686(00)00082-8]   DOI
22 Duran, A., Monteagudo, J. M., Sanmartin, I., Garcia-Pena, F., Coca, P. (2009). Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes. J. of envi. manag., 90(3), pp. 1370-1376. [https://doi.org/10.1016/j.jenvman.2008.08.002]   DOI
23 Fu, F., Wang, Q. (2011). Removal of heavy metal ions from waste waters: a review. J. of envi. manag., 92(3), pp. 407-418.[https://doi.org/10.1016/j.jenvman.2010.11.011]   DOI
24 Jeon, C., Park, J. Y., Yoo, Y. J. (2001). Removal of heavy metals in plating wastewater using carboxylated alginic acid. Kor. J. Chem. Eng., 18(6), pp. 955-960. [Korean Literature][https://doi.org/10.1007/BF02705625]   DOI
25 Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wei, B. (2003). Competitive adsorption of $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), pp. 2787-2792. [https://doi.org/10.1016/S0008-6223(03)00392-0]   DOI