Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3671

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts  

Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University)
Li, Fayun (Institute of Eco-environmental Sciences, Liaoning Shihua University)
Fan, Zhiping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
Publication Information
Abstract
A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.
Keywords
Carbon nanotube; $C_{60}$; Graphene; $TiO_2$; Visible light;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.   DOI   ScienceOn
2 Xu, Y. J.; Zhuang, Y.; Fu, X. J. Phys. Chem. C 2010, 114, 2669.   DOI   ScienceOn
3 Joumet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Nature 1997, 388, 756.   DOI   ScienceOn
4 Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.   DOI   ScienceOn
5 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.   DOI   ScienceOn
6 Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.   DOI   ScienceOn
7 Geim, A. K. Science 2009, 324, 1530.   DOI   ScienceOn
8 Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.   DOI   ScienceOn
9 Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew. Chem., Int. Ed. 2009, 48, 7752.   DOI   ScienceOn
10 Guo, S.; Dong, S. Chem. Soc. Rev. 2011, 40, 2644.   DOI   ScienceOn
11 Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.   DOI   ScienceOn
12 Liang, Y. T.; Hersam, M. C. J. Am. Chem. Soc. 2010, 132, 17661.   DOI   ScienceOn
13 Zhao, D.; Sheng, G.; Chen, C.; Wang, X. Appl. Catal., B 2012, 111-112, 303.   DOI   ScienceOn
14 Zhang, J.; Xiong, Z.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634.   DOI   ScienceOn
15 Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.   DOI
16 Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. ACS Nano 2011, 5, 7426.   DOI   ScienceOn
17 Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C. L.; Wang, S.; Fan, Z. Y. ACS Appl. Mater. Interfaces 2012, 4, 3944.   DOI   ScienceOn
18 Liu, S. W.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914.   DOI   ScienceOn
19 Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. ACS Nano 2010, 4, 7303.   DOI   ScienceOn
20 Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514.   DOI   ScienceOn
21 Yu, J. G.; Wang, G. H.; Cheng, B.; Zhou, M. H. Appl. Catal. B 2007, 69, 171.   DOI   ScienceOn
22 Wang, X. D.; Caruso, R. A. J. Mater. Chem. 2011, 21, 20.   DOI   ScienceOn
23 Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater. 2009, 21, 2233.   DOI   ScienceOn
24 Zhang, L. W.; Wang, Y. J.; Xu, T. G.; Zhu, S. B.; Zhu, Y. F. J. Mol. Catal. A: Chem. 2010, 331, 7.   DOI   ScienceOn
25 Fan, W. Q.; Lai, Q. H.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2011, 115, 10694.   DOI   ScienceOn
26 Zhu, P. L.; Nair, A. S.; Yang, S. Y.; Peng, S. J.; Elumalai, N. K.; Ramakrishna, S. J. Photochem. Photobiol. A 2012, 231, 9.   DOI   ScienceOn
27 Mu, S.; Long, Y. Z.; Kang, S. Z.; Mu, J. Catal. Commun. 2010, 11, 741.   DOI   ScienceOn
28 Shah, Md. S. A. S.; Park, A. R.; Zhang, K.; Park, J. H.; Yoo, P. J. ACS Appl. Mater. Interfaces 2012, 4, 3893.   DOI   ScienceOn
29 Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908.   DOI   ScienceOn
30 Oregan, B.; Gratzel, M. Nature 1991, 353, 737.   DOI
31 Nakajima, H.; Mori, T.; Shen, Q.; Toyoda, T. Chem. Phys. Lett. 2005, 409, 81.   DOI   ScienceOn
32 Zhang, N.; Liu, S.; Fu, X.; Xu, Y. J. J. Phys. Chem. C 2011, 115, 22901.   DOI   ScienceOn
33 He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9,425.   DOI   ScienceOn
34 Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie, C. S. ACS Catal. 2013, 3, 1477.   DOI   ScienceOn
35 Zhang, N.; Fu, X.; Xu, Y. J. J. Mater. Chem. 2011, 21, 8152.   DOI   ScienceOn
36 Stylidi, M.; Kondarides, D. I.; Verykios, X. E. Appl. Catal., B 2004, 47, 189.   DOI   ScienceOn
37 Raja, P.; Bozzi, A.; Mansilla, H.; Kiwi, J. J. Photochem. Photobiol. A 2005, 169, 271.   DOI   ScienceOn