• 제목/요약/키워드: Carbon film

검색결과 1,327건 처리시간 0.028초

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk;Park, Ok-Kyung;Lee, Joong Hee;Ku, Bon-Cheol
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.247-250
    • /
    • 2013
  • In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.

Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors

  • Sung, Shi-Joon;Park, Mi Sun;Kim, Dae-Hwan;Kang, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1473-1476
    • /
    • 2013
  • Solution-based deposition of $CuIn_xGa_{1-x}Se_2$ (CIGSe) thin films is well known non-vacuum process for the fabrication of CIGSe solar cells. However, due to the usage of organic chemicals in the preparation of CIG precursor solutions, the crystallization of the polycrystalline CIGSe and the performance of CIGSe thin film solar cells were significantly affected by the carbon residues from the organic chemicals. In this work, we have tried to eliminate the carbon residues in the CIG precursor thin films efficiently by using soft-annealing process. By adjusting soft-annealing temperature, it is possible to control the amount of carbon residues in CIG precursor thin films. The reduction of the carbon residues in CIG precursors by high temperature soft-annealing improves the grain size and morphology of polycrystalline CIGSe thin films, which are also closely related with the electrical properties of CIGSe thin film solar cells.

방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리 (Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material)

  • 서은덕
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

Low Potential Amperometric Determination of Ascorbic Acid at a Single-Wall Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode

  • Fei, Junjie;Wu, Kangbing;Yi, Lanhua;Li, Junan
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1403-1409
    • /
    • 2005
  • A sensitive and selective electrochemical method was developed for the amperometric determination of ascorbic acid (AA) at a glassy carbon electrode (GCE) modified with single-wall carbon nanotubesdihexadecyl hydrogen phosphate (SWNT-DHP) composite film. The SWNT-DHP composite film modified GCE was characterized with SEM. The SWNT-DHP composite film modified GCE exhibited excellent electrocatalytic behaviors toward the oxidation of AA. Compared with the bare GCE, the oxidation current of AA increased greatly and the oxidation peak potential of AA shifted negatively to about -0.018 V (vs. SCE) at the SWNT-DHP composite film modified GCE. The experimental parameters, which influence the oxidation current of AA, were optimized. Under the optimal conditions, the amperometric measurements were performed at a applied potential of -0.015 V and a linear response of AA was obtained in the range from 4 ${\times}$ $10^{-7}$ to 1 ${\times}$ $10^{-4}$ mol $L^{-1}$ and with a limit of detect (LOD) of 1.5 ${\times}$ $10^{-7}$ mol $L^{-1}$. The interferences study showed that the SWNT-DHP composite film modified GCE exhibited good sensitivity and excellent selectivity in the presence of high concentration uric acid and dopamine. The proposed procedure was successfully applied to detect AA in human urine samples with satisfactory results.

수소 플라즈마 에칭과 탄소 확산법에 의한 다이아몬드막 표면의 평탄화 (Planarization of the Diamond Film Surface by Using the Hydrogen Plasma Etching with Carbon Diffusion Process)

  • 김성훈
    • 대한화학회지
    • /
    • 제45권4호
    • /
    • pp.351-356
    • /
    • 2001
  • 철, 코발트, 니켈 합금을 이용한 탄소확산-수소플라즈마 에칭법으로 다이아몬드 자체막의 표면을 매우 평탄하게 할 수 있었다. 이 방법에서의 다이아몬드 자체막을 합금과 몰리브데늄 기판 사이에 위치시켜 금속-다이아몬드-몰리브데늄(MDM) 샌드위치 형태의 샘플 세 트를 이루게 하였다. 이 샘플세트를 마이크로 웨이브 플라즈마 장치에 장착하여 수소 플라즈마를 발생시켜서 기판온도가 섭씨 1,000 이상이 되도록 하였다. 이와 같은 과정들은 탄소확산-수소플라즈마 방법이라고 하였다. 다이아몬드 자체막 표면을 에칭한 후 표면 거칠기, 표면형상, 에칭한 다이아몬드 표면속의 불순물의 침투를 조사하였다. 결론적으로, 탄소 확산-수소 플라즈마 에칭법은 전자 디바이스에 응용할 수 있는 매우 평탄한 다이아몬드 표면을 형성시키는 방법임을 알 수 있다.

  • PDF

유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성 (Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor)

  • 김동현;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Diamond-Like Carbon Films Deposited by Pulsed Magnetron Sputtering System with Rotating Cathode

  • Chun, Hui-Gon;You, Yong-Zoo;Nikolay S. Sochugov;Sergey V. Rabotkin
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.296-300
    • /
    • 2003
  • Extended cylindrical magnetron sputtering system with rotating 600-mm long and 90-mm diameter graphite cathode and pulsed power supply voltage generator were developed and fabricated. Time-dependent Langmuir probe characteristics as well as carbon films thickness were measured. It was shown that ratio of ions flux to carbon atoms flux for pulsed magnetron discharge mode was equal to $\Phi_{i}$ $\Phi$sub C/ = 0.2. It did not depend on the discharge current in the range of $I_{d}$ / = 10∼60 A since both the plasma density and the film deposition rate were found approximately proportional to the discharge current. In spite of this fact carbon film structure was found to be strongly dependent on the discharge current. Grain size increased from 100 nm at $I_{d}$ = 10∼20 A to 500 nm at $I_{d}$ = 40∼60 A. To deposit fine-grained hard nanocrystalline or amorphous carbon coating current regime with $I_{d}$ = 20 A was chosen. Pulsed negative bias voltage ($\tau$= 40 ${\mu}\textrm{s}$, $U_{b}$ = 0∼10 ㎸) synchronized with magnetron discharge pulses was applied to a substrate and voltage of $U_{b}$ = 3.4 ㎸ was shown to be optimum for a hard carbon film deposition. Lower voltages were not sufficient for amorphization of a growing graphite film, while higher voltages led to excessive ion bombardment and effects of recrystalization and graphitization.

탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향 (The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length)

  • 홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구 (Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites)

  • 은종현;곽재원;김기정;김민성;성선민;최보경;김동현;이준석
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.161-168
    • /
    • 2020
  • 본 연구에서는 스프레드 기술이 적용된 열가소성 탄소섬유 복합재료의 성형 온도에 따른 기계적 특성과 폴리프로필렌 필름의 열적 특성에 대해 조사하였다. 스프레드 기술이 적용된 탄소섬유 직물과 범용 탄소섬유 직물로 탄소섬유 강화 복합재료를 제작하였고, 시차 열량 주사계(DSC), 열 중량 분석법(TGA), 점도계를 사용하여 폴리프로필렌 필름의 열적 특성을 측정하였다. 인장, 굽힘, 층간 전단 실험을 통해 복합재료 성형 온도 조건에 따른 스프레드 탄소섬유 복합재료(SCFC)와 범용 탄소섬유 복합재료(CCFC)의 기계적 특성을 확인하였다. 폴리프로 필렌 수지의 융점 이상인 200~240℃ 구간에서 복합재료를 제작하였으며, 주사 전자 현미경(SEM) 분석을 통해 성형 온도 조건에 따른 열가소성수지의 함침성을 관찰하였다. 그 결과, 성형 온도가 증가함에 따라 폴리프로필렌 수지의 점도가 감소하여 함침성이 향상되었으며, 230℃ 성형 온도 조건에서 기계적 특성이 가장 우수한 것을 확인하였다.