DOI QR코드

DOI QR Code

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk (Carbon Convergence Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Park, Ok-Kyung (Carbon Convergence Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Lee, Joong Hee (Department of BIN Fusion Technology and Department of Polymer and Nano Science and Technology, Chonbuk National University) ;
  • Ku, Bon-Cheol (Carbon Convergence Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
  • Received : 2013.08.15
  • Accepted : 2013.10.05
  • Published : 2013.10.31

Abstract

In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.

Keywords

References

  1. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi.org/10.1126/science.1156965.
  2. Pham VH, Cuong TV, Nguyen-Phan T-D, Pham HD, Kim EJ, Hur SH, Shin EW, Kim S, Chung JS. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun, 46, 4375 (2010). http://dx.doi.org/10.1039/C0CC00363H.
  3. Huang W, Ouyang X, Lee LJ. High-performance nanopapers based on benzenesulfonic functionalized graphenes. ACS Nano, 6, 10178 (2012). http://dx.doi.org/10.1021/nn303917p.
  4. Huang P, Zhu H, Jing L, Zhao Y, Gao X. Graphene covalently binding aryl groups: conductivity increases rather than decreases. ACS Nano, 5, 7945 (2011). http://dx.doi.org/10.1021/nn2023232.
  5. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev, 41, 666 (2012). http://dx.doi.org/10.1039/C1CS15078B.
  6. Chae BJ, Kim DH, Jeong IS, Hahn JR, Ku BC. Electrical and thermal properties of poly(p-phenylene sulfide) reduced graphite oxide nanocomposites. Carbon Lett, 13, 221 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.221.
  7. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater, 3, 115 (2004). http://dx.doi.org/10.1038/nmat1059.
  8. Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater, 22, 3441 (2010). http://dx.doi.org/10.1021/cm100477v.
  9. Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci, 409-410, 156 (2012). http://dx.doi.org/10.1016/j.memsci.2012.03.051.
  10. Ku BC, Kumar J, Blumstein A, Kim DW, Samuelson LA. Barrier properties of ordered multilayer polymer nanocomposites. In: Schwarz JA, Contescu CI, Putyera K, eds. Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 213 (2004). http://dx.doi.org/10.1201/9781439834398.ch9.
  11. Decher G. Fuzzy Nanoassemblies: toward layered polymeric multicomposites. Science, 277, 1232 (1997). http://dx.doi.org/10.1126/science.277.5330.1232.
  12. Yang YH, Bolling L, Priolo MA, Grunlan JC. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater, 25, 503 (2013). http://dx.doi.org/10.1002/adma.201202951.
  13. Qu Q, Gu C, Gu Z, Shen Y, Wang C, Hu X. Layer-by-layer assembly of polyelectrolyte and graphene oxide for open-tubular capillary electrochromatography. J Chromatogr A, 1282, 95 (2013). http://dx.doi.org/10.1016/j.chroma.2013.01.055.
  14. Park JS, Cho SM, Kim WJ, Park J, Yoo PJ. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl Mater Interfaces, 3, 360 (2011). http://dx.doi.org/10.1021/am100977p.
  15. Lee DW, Hong TK, Kang D, Lee J, Heo M, Kim JY, Kim B-S, Shin HS. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J Mater Chem, 21, 3438 (2011). http://dx.doi.org/10.1039/C0JM02270E.
  16. Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.
  17. Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. The origin of fluorescence from graphene oxide. Sci Rep, 2, 792 (2012). http://dx.doi.org/10.1038/srep00792.
  18. Park OK, Hwang JY, Goh M, Lee JH, Ku BC, You NH. Mechanically strong and multifunctional polyimide nanocomposites using amimophenyl functionalized graphene nanosheets. Macromolecules, 46, 3505 (2013). http://dx.doi.org/10.1021/ma400185j.
  19. Kim NH, Kuila T, Lee JH. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. J Mater Chem A, 1, 1349 (2013). http://dx.doi.org/10.1039/C2TA00853J.
  20. Park OK, Hahm MG, Lee S, Joh HI, Na SI, Vajtai R, Lee JH, Ku BC, Ajayan PM. In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. Nano Lett, 12, 1789 (2012). http://dx.doi.org/10.1021/nl203803d.
  21. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401.
  22. Park OK, Lee S, Joh HI, Kim JK, Kang PH, Lee JH, Ku BC. Effect of functional groups of carbon nanotubes on the cyclization mechanism of polyacrylonitrile (PAN). Polymer, 53, 2168 (2012). http://dx.doi.org/10.1016/j.polymer.2012.03.031.
  23. Priolo MA, Gamboa D, Holder KM, Grunlan JC. Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett, 10, 4970 (2010). http://dx.doi.org/10.1021/nl103047k.
  24. Tseng IH, Liao YF, Chiang JC, Tsai MH. Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys, 136, 247 (2012). http://dx.doi.org/10.1016/j.matchemphys.2012.06.061.

Cited by

  1. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089
  2. Multilayer thin films for the construction of active repulsive hydrogen barriers vol.6, pp.6, 2018, https://doi.org/10.1039/C7TA09116H
  3. Tyramine Functionalized Graphene: Metal-Free Electrochemical Non-Enzymatic Biosensing of Hydrogen Peroxide pp.21960216, 2018, https://doi.org/10.1002/celc.201801083
  4. Two-photon-induced stretchable graphene supercapacitors vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30194-2
  5. Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium vol.9, pp.12, 2019, https://doi.org/10.1039/C8RA10286D