• Title/Summary/Keyword: Carbon Nanotube(CNT)

Search Result 760, Processing Time 0.027 seconds

Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin;Kavla, Furkan
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.789-798
    • /
    • 2020
  • The effect of Chitosan (CS), Carbon Nanotube (CNT) and hybrid (CS-CNT) fillers on the natural frequency of drilled composite plate is investigated by experimentally in this study. The numerical validation is also made with a program based on Finite Element Method (SolidWorks). Nine types filled and one neat composite plates are used in the study. The fillers ratios are 1% CS, 2% CS, 3% CS, 0.1% CNT, 0.2% CNT, 0.3% CNT, 1% CS+0.3% CNT, 2% CS+0.3% CNT, 3% CS+0.3% CNT. The specimens cut to certain sizes by water jet from the plates 400 mm × 400 mm in dimensions. Some of them are drilled in certain dimensions with drill. The natural frequency of each specimen is measured by the vibration test set up to determine the vibration characteristic. The vibration test set up includes an accelerometer, a current source power unit, a data acquisition card and a computer. A code is written in Matlab® program for the signal processing. The study are investigated and discussed in four main points to understand the effect of the fillers on the natural frequency of the composite plate. These are the effect of fillers contents and amounts, orientation angles of fibers, holes numbers and holes sizes. As results, the natural frequency of the plate with 1% CS and 0.1% CNT hybrid filler is lower than those of the plates with other fillers ratios for 45° orientation angle. Besides, in the composite plate with 0° orientation angle, the natural frequency increases with increasing the filler ratio. Moreover, the natural frequency increases until a certain hole number and then it decreases. Furthermore, the natural frequency is not affected until a certain hole diameter but then it decreases.

Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) to Reduce Off-Current

  • Heo, Jae;Jeon, Seung-Bae
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.240-242
    • /
    • 2013
  • In this paper, novel Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) is proposed. This proposed device is designed to decrease off-current around 2~6 orders of magnitude compared to the gate-channel size matched TFET. Mechanism of CNT G-E TFET creates additional steps in energy band structure so that off-current can be reduced. Since CNT TFETs show a great probability for tunneling processes and they are beneficial for the overall device performance in terms of switching speed and power consumption, CNT G-E TFET looks pretty much promising.

  • PDF

Mode 1 Fracture Toughness Test of CNT/Epoxy Composites with Different CNT Content (CNT 함량에 따른 CNT/Epoxy 복합재료 제작 및 모드 1 파괴 인성 평가)

  • KWON, DONG-JUN;YOO, HYEONGMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.86-91
    • /
    • 2021
  • In order to save the energy in vehicles using renewable energy, it is necessary to reduce the weight of parts with polymer matrix composites. Carbon nanotube (CNT) is the nano-scale reinforcement used to increase the interlaminar strength of fiber reinforced composites or enhance the fracture toughness of polymer. However, since the degree of improvement in mechanical properties varies according to the various experimental conditions such as shape of reinforcement, types of matrix and dispersion of reinforcement, research to find the optimal conditions is essentially needed. In this study, CNT/epoxy composites with different CNT concentration were fabricated under the same conditions, and the optimal CNT content (2 wt%) was found through Mode 1 fracture toughness test. Furthermore, through optical microscopy, it was confirmed that the fracture toughness was rather decreased due to the CNT aggregation when the CNT content exceeded 2 wt%.

Improved Field Emission by Liquid Elastomer Modification of Screen-Printed CNT Film Morphology

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • The effect of improvement on the surface morphology of screen-printed carbon nanotube (CND) films was studied by using the optically clear poly-dimethylsiloxane (PDMS) elastomer for surface treatment. After the PDMS activation treatment was applied to the diode-type CNT cathode, the entangled carbon nanotube (CNT) bundles were broken up into individual free standing nanotubes to remarkably improve the field-emission characteristics over the as-deposited CNT film. Also, the cathode film morphology of a top gated triode-type structure can be treated by using the proposed surface treatment technique, which is a low-cost process, simple process. The relative uniform emission image showed high brightness with a high anode current. This result shows the possibility of using this technique for surface treatment of large-size field emission displays (FEDs) in the future.

Fabrication and Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites (탄소나노튜브가 분산된 비스무스 텔루라이드 기지 복합재료의 제조 및 열전특성)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Kim, Kyong-Ju;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • Carbon-nanotube-embedded bismuth telluride (CNT/$Bi_2Te_3$) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with $Bi_2Te_3$ alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/$Bi_2Te_3$ composites by spark plasma sintering process at $350^{\circ}C$ for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the $Bi_2Te_3$ matrix. Seebeck coefficient of CNT/$Bi_2Te_3$ composites reveals that the composite has n-type semiconducting characteristics with values ranging $-55\;{\mu}V/K$ to $-95\;{\mu}V/K$ with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.

Effects of Carbon nanotube Incorporation on the Mechanical Recovery of Portland Cement Paste Exposed to High Temperatures (탄소나노튜브의 혼입량 변화가 고온에 노출된 시멘트 페이스트의 역학적 성능 회복에 미치는 영향)

  • Suh, Heong-Won;Park, Tae-Hoon;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.114-115
    • /
    • 2019
  • When concrete is exposed to fire, the decomposition of Portland cement paste results in critical damage to the concrete structure of a building. Although the behavior of cement pastes after heating provides crucial information with respect to the reuse of the building exposed to fire, the recovery process of the damaged concrete structure has not yet been fully elucidated. In addition, research on appropriate additives such as carbon nanotube (CNT) has been increasing recently, however, investigation of CNT incorporated cement paste after decomposition of CNT by high temperature is not fully investigated. In this study, we investigated the physicochemical properties of CNT incorporated cement paste under different temperatures (200℃, 500℃ and 800℃). Also, the effects of different rehydration conditions (20℃ 60% RH and in water for different curing times) on the recovery of the paste were studied. The changes in tensile and compressive strength, surface observation of the specimens were characterized. In addition, the decomposition and formation of hydrates in the paste due to the heating process were studied using X-ray diffraction.

  • PDF

Effects of Carbon Nanotube and Nanosilica Incorporation on the Mechanical Recovery of Portland Cement Paste Exposed to High Temperatures (탄소나노튜브와 나노실리카의 혼입량 변화가 고온에 노출된 시멘트 페이스트의 역학적 성능 회복에 미치는 영향)

  • Suh, Heongwon;Jee, Hyeonseok;Park, Taehoon;Bae, Sungchul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.149-150
    • /
    • 2019
  • When concrete is exposed to fire, the decomposition of Portland cement paste results in critical damage to the concrete structure of a building. However the recovery process of the damaged concrete structure has not yet been fully elucidated. In addition, research on appropriate additives such as carbon nanotube (CNT) and nanosilica has been increasing recently, however, investigation of CNT and nanosilica incorporated cement paste after decomposition of CNT by high temperature is not fully investigated. In this study, we investigated the physicochemical properties of CNT incorporated cement paste under different temperatures ($200^{\circ}C$, $500^{\circ}C$ and $800^{\circ}C$). Also, the effects of different rehydration conditions ($20^{\circ}C$ 60% RH and in water for different curing times) on the recovery of the paste were studied. The changes in tensile strength, surface observation of the specimens were characterized. In addition, the decomposition and formation of hydrates in the paste due to the heating process were studied using X-ray diffraction. The results showed that incorporation of nanosilica enhanced tensile strength after heating to each target temperatures.

  • PDF

Stretchable Carbon Nanotube Composite Clays with Electrical Enhancers for Thermoelectric Energy Harvesting E-Skin Patches

  • Tae Uk Nam;Ngoc Thanh Phuong Vo;Jun Su Kim;Min Woo Jeong;Kyu Ho Jung;Alifone Firadaus Nurwicaksono Adi;Jin Young Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Electronic skin (e-skin), devices that are mounted on or attached to human skin, have advanced in recent times. Yet, the development of a power supply for e-skin remains a challenge. A stretchable thermoelectric generator is a promising power supply for the e-skin patches. It is a safe and semi-permanent energy harvesting device that uses body heat for generating power. Carbon nanotube (CNT) clays are used in energy-harvesting e-skin patches. In this study, we report improved thermoelectric performance of CNT clays by using chemical doping and physical blending of thermoelectric enhancers. The n-type and p-type thermoelectric enhancers increase electrical conductivity, leading to increased power factors of the thermoelectric CNT clays. The blend of CNT clays and enhancers is intrinsically stretchable up to 50% while maintaining its thermoelectric property.

Excellent field emission properties from carbon nanotube field emitters fabricated using a filtration-taping method

  • Shin, Dong Hoon;Jung, Seung;Yun, Ki Nam;Chen, Guohai;Jeon, Seok-Gy;Kim, Jung-Il;Lee, Cheol Jin
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.214-217
    • /
    • 2014
  • A filtration-taping method was demonstrated to fabricate carbon nanotube (CNT) emitters. This method shows many good features, including high mechanical adhesion, good electrical contact, low temperature, organic-free, low cost, large size, and suitability for various CNT materials and substrates. These good features promise an advanced field emission performance with a turn-on field of $0.88V/{\mu}m$ at a current density of $0.1{\mu}A/cm^2$, a threshold field of $1.98V/{\mu}m$ at a current density of $1mA/cm^2$, and a good stability of over 20 h. The filtration-taping technique is an effective way to realize low-cost, large-size, and high-performance CNT emitters.

Selective Growth of Freestanding Carbon Nanotubes Using Plasma-Enhanced Chemical Vapor Deposition (플라즈마 기상 화학 증착법을 이용한 탄소나노튜브의 선택적 수직성장 기술)

  • Bang, Yun-Young;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.113-120
    • /
    • 2007
  • Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for carbon nanotube (CNT) growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using a direct current (dc) PECVD system. The synthesis of CNT requires a metal catalyst layer, etchant gas, and a carbon source. In this work, the substrates consists of Si wafers with Ni-deposited film. Ammonia $NH_3$) and acetylene ($C_2H_2$) were used as the etchant gases and carbon source, respectively. Pretreated conditions had an influence on vertical growth and density of CNTs. And patterned growth of CNTs could be achieved by lithographical defining the Ni catalyst prior to growth. The length of single CNT was increased as niclel dot size increased, but the growth rate was reduced when nickel dot size was more than 200 nm due to the synthesis of several CNTs on single Ni dot. The morphology of the carbon nanotubes by TEM showed that vertical CNTs were multi-wall and tip-type growth mode structure in which a Ni cap was at the end of the CNT.