DOI QR코드

DOI QR Code

Excellent field emission properties from carbon nanotube field emitters fabricated using a filtration-taping method

  • Shin, Dong Hoon (School of Electrical Engineering, Korea University) ;
  • Jung, Seung (School of Electrical Engineering, Korea University) ;
  • Yun, Ki Nam (School of Electrical Engineering, Korea University) ;
  • Chen, Guohai (National Institute of Advanced Industrial Science and Technology) ;
  • Jeon, Seok-Gy (Advanced Medical Device Research Center, Korea Electrotechnology Research Institute) ;
  • Kim, Jung-Il (Advanced Medical Device Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Cheol Jin (School of Electrical Engineering, Korea University)
  • 투고 : 2014.06.23
  • 심사 : 2014.07.12
  • 발행 : 2014.07.31

초록

A filtration-taping method was demonstrated to fabricate carbon nanotube (CNT) emitters. This method shows many good features, including high mechanical adhesion, good electrical contact, low temperature, organic-free, low cost, large size, and suitability for various CNT materials and substrates. These good features promise an advanced field emission performance with a turn-on field of $0.88V/{\mu}m$ at a current density of $0.1{\mu}A/cm^2$, a threshold field of $1.98V/{\mu}m$ at a current density of $1mA/cm^2$, and a good stability of over 20 h. The filtration-taping technique is an effective way to realize low-cost, large-size, and high-performance CNT emitters.

키워드

참고문헌

  1. de Heer WA, Chatelain A, Ugarte D. A carbon nanotube fieldemission electron source. Science, 270, 1179 (1995). http://dx.doi.org/10.1126/science.270.5239.1179.
  2. Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 38, 169 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00139-6.
  3. de Jonge N, Lamy Y, Schoots K, Oosterkamp TH. High brightness electron beam from a multi-walled carbon nanotube. Nature, 420, 393 (2002). http://dx.doi.org/10.1038/nature01233.
  4. Liu ZJ, Yang G, Lee YZ, Bordelon D, Lu JP, Zhou O. Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography. Appl Phys Lett, 89, 103111 (2006). http://dx.doi.org/10.1063/1.2345829.
  5. Yabushita R, Hata K. Development of high spatial resolution x-ray radiography system equipped with multiwalled carbon nanotube field emission cathode. J Vac Sci Technol B, 26, 702 (2008). http://dx.doi.org/10.1116/1.2894879.
  6. Chen G, Shin DH, Iwasaki T, Kawarada H, Lee CJ. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology, 19, 415703 (2008). http://dx.doi.org/10.1088/0957-4484/19/41/415703.
  7. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). http://dx.doi.org/10.1126/science.282.5391.1105.
  8. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett, 75, 3129 (1999). http://dx.doi.org/10.1063/1.125253.
  9. Gao B, Yue GZ, Qiu Q, Cheng Y, Shimoda H, Fleming L, Zhou O. Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv Mater, 13, 1770 (2001). http://dx.doi.org/10.1002/1521-4095(200112)13:23<1770::AIDADMA1770>3.0.CO;2-G.
  10. Jung SI, Choi JS, Shim HC, Kim S, Jo SH, Lee CJ. Fabrication of probe-typed carbon nanotube point emitters. Appl Phys Lett, 89, 233108 (2006). http://dx.doi.org/10.1063/1.2402222.
  11. Chun KY, Choi SK, Kang HJ, Park CY, Lee CJ. Highly dispersed multi-walled carbon nanotubes in ethanol using potassium doping. Carbon, 44, 1491 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.004.
  12. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG. Transparent, conductive carbon nanotube films. Science, 305, 1273 (2004). http://dx.doi.org/10.1126/science.1101243.
  13. Fujii S, Honda S, Machida H, Kawai H, Ishida K, Katayama M, Furuta H, Hirao T, Oura K. Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl Phys Lett, 90, 153108 (2007). http://dx.doi.org/10.1063/1.2721876.
  14. Chhowalla M, Ducati C, Rupesinghe NL, Teo KBK, Amaratunga GAJ. Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett, 79, 2079 (2001). http://dx.doi.org/10.1063/1.1406557.
  15. Zeng BQ, Xiong GY, Chen S, Wang WZ, Wang DZ, Ren ZF. Enhancement of field emission of aligned carbon nanotubes by thermal oxidation. Appl Phys Lett, 89, 223119 (2006). http://dx.doi.org/10.1063/1.2399342.
  16. Kim YC, Sohn KH, Cho YM, Yoo EH. Vertical alignment of printed carbon nanotubes by multiple field emission cycles. Appl Phys Lett, 84, 5350 (2004). http://dx.doi.org/10.1063/1.1766403.
  17. Chen KF, Chen KC, Jiang YC, Jiang LY, Chang YY, Hsiao MC, Chan LH. Field emission image uniformity improvement by laser treating carbon nanotube powders. Appl Phys Lett, 88, 193127 (2006). http://dx.doi.org/10.1063/1.2203206.
  18. Liang XH, Deng SZ, Xu NS, Chen J, Huang NY, She JC. On achieving better uniform carbon nanotube field emission by electrical treatment and the underlying mechanism. Appl Phys Lett, 88, 111501 (2006). http://dx.doi.org/10.1063/1.2180439.
  19. Weng CH, Leou KC, Wei HW, Juang ZY, Wei MT, Tung CH, Tsai CH. Structural transformation and field emission enhancement of carbon nanofibers by energetic argon plasma post-treatment. Appl Phys Lett, 85, 4732 (2004). http://dx.doi.org/10.1063/1.1815062.
  20. Kim JS, Ahn KS, Kim CO, Hong JP. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature. Appl Phys Lett, 82, 1607 (2003). http://dx.doi.org/10.1063/1.1559654.
  21. Vink TJ, Gillies M, Kriege JC, van de Laar HWJJ. Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett, 83, 3552 (2003). http://dx.doi.org/10.1063/1.1622789.
  22. Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon, 44, 2689 (2006). http://dx.doi.org/10.1016/j.carbon.2006.04.009.
  23. Qian C, Qi H, Gao B, Cheng Y, Qiu Q, Qin LC, Zhou O, Liu J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J Nanosci Nanotechnol, 6, 1346 (2006). http://dx.doi.org/10.1166/jnn.2006.140.
  24. Moon JS, Alegaonkar PS, Han JH, Lee TY, Yoo JB, Kim JM. Enhanced field emission properties of thin-multiwalled carbon nanotubes: role of $SiO_x$ coating. J Appl Phys, 100, 104303 (2006). http://dx.doi.org/10.1063/1.2384795.

피인용 문헌

  1. Fabrication and Field Emission Properties of Diamond-Like Carbon Nanostructure Arrays Deposited by Filtered Cathodic Vacuum Arc vol.13, pp.11, 2016, https://doi.org/10.1002/ppap.201600023