• 제목/요약/키워드: Carbon Nanotube(CNT)

검색결과 749건 처리시간 0.03초

유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정 (Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed)

  • 김성원
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.646-651
    • /
    • 2017
  • CNT 유동층 반응기(내경 0.15 m, 높이 2.6 m) 희박상 내 CNT 입자(평균입도 $291{\mu}m$, 벌크밀도 $72.9kg/m^3$)의 거동을 확인하기 위해 레이저 슬릿광 형상 측정법을 이용하여, CNT 응집체의 크기 및 형태를 측정하였다. 기포유동층 조건에서 CNT 반응기 내 축방향 고체체류량 분포는 하부 농후상과 상부 희박상을 갖는 S자 형태를 보였다. 기체 유속이 증가할수록 비산되는 CNT 응집체의 Heywood 직경과 Feret 직경이 증가하였고, 응집체 내 CNT 입자수가 증가하였다. 또한, 기체의 유속이 증가할수록 CNT 응집체의 종횡비는 증가하고, 원형도는 감소하였다. CNT 응집체의 원마도와 견고도는 기체의 유속이 증가할수록 감소하였다. 응집체의 형상 분석 정보에 기반한 희박상 내 응집체 형성 원인을 제안하였다.

감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과 (Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties)

  • 장은수;이한성;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구 (An Atomistic Modeling for Electromechanical Nanotube Memory Study)

  • 이강환;권오근
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.116-125
    • /
    • 2006
  • We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.

주사탐침현미경용 카본나노튜브 팁의 조립 조건 실험 (An Experiment about Assembling Condition of Carbon Nanotube Tip for AFM)

  • 박준기;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2004
  • This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.

  • PDF

패턴이 형성된 탄소나노튜브 매트의 이산화질소 감응 특성 (NO2 gas sensing characteristics of patterned carbon nanotube mats)

  • 조우성;문승일;백경갑;박정호;주병권
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.199-204
    • /
    • 2006
  • Carbon nanotube (CNT) mats grown by thermal chemical vapor deposition on a micromachined substrate with a chrome heater and a diaphragm were investigated as sensing materials of resistive gas sensors for nitrogen dioxide ($NO_{2}$) gas. The aligned CNT mats fabricated into mesh and serpentine shapes by the patterned cobalt catalyst layer. CNT mats showed a p-type electrical resistivity with decreasing electrical resistance upon exposure to $NO_{2}$. All sensors exhibited a reversible response at a thermal treatment temperature of $130^{\circ}C$ for about 5 minutes. The resistance change to $NO_{2}$ of the mesh-shaped CNT mats was larger than that of the serpentine-shaped CNT mats.

탄소나노튜브를 첨가한 4H-SiC MOS 캐패시터의 전기적 특성 (Electrical Characteristics of Carbon Nanotube Embedded 4H-SiC MOS Capacitors)

  • 이태섭;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.547-550
    • /
    • 2014
  • In this study, the electrical characteristics of the nickel (Ni)/carbon nanotube (CNT)/$SiO_2$ structures were investigated in order to analyze the mechanism of CNT in MOS device structures. We fabricated 4H-SiC MOS capacitors with or without CNTs. CNT was dispersed by isopropyl alcohol. The capacitance-voltage (C-V) and current-voltage (I-V) are characterized. Both devices were measured by Keithley 4200 SCS. The experimental flatband voltage ($V_{FB}$) shift was positive. Near-interface trap charge density ($N_{it}$) and negative oxide trap charge density ($N_{ox}$) value of CNT embedded MOS capacitors was less than that values of reference samples. Also, the leakage current of CNT embedded MOS capacitors is higher than reference samples. It has been found that its oxide quality is related to charge carriers and/or defect states in the interface of MOS capacitors.

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

CNT의 동적 거동 해석을 위한 정전기력의 선형화 (Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis)

  • 이종길
    • 대한공업교육학회지
    • /
    • 제30권2호
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

폴리하드록시부틸레이트 회수를 위한 물리적 세포 파쇄용 돌기형 탄소나노튜브 분리막 제작 (Development of Physical Cell Lysis Using a Spiked CNT Membrane for Polyhydroxybutyrate Recovery)

  • 문지원;백영빈
    • 멤브레인
    • /
    • 제33권6호
    • /
    • pp.390-397
    • /
    • 2023
  • 석유기반 플라스틱의 대체제인 폴리하드록시부틸레이트(polyhydroxybutyrate, PHB)의 기존 추출방법은 분자량 감소 및 물성 변형을 일으킨다. 본 연구에서는 기능화 된 탄소나노튜브(carbon nanotube, CNT)를 부착한 돌기형 탄소나노튜브 분리막의 여과를 통해 물리적 파쇄를 발생시켜 미생물 내 축적된 PHB를 추출하고자 하였다. 돌기형 탄소나노튜브 분리막의 물리적 파쇄를 확인하기 위해 대장균 용액으로 여과 실험을 수행하여 불활성화를 관찰하였다. 또한 PHB를 축적한 미생물 용액의 여과를 수행하여 PHB가 추출되었는지 확인하였더니 가장 대표적인 추출방법인 chloroform과 비교하여도 여과로 인한 추출이 4% 높은 성능을 가진 것을 관찰하였다. 본 결과를 통해 친환경적 바이오 플라스틱 회수를 위한 돌기형 탄소나노튜브 분리막의 적용 가능성을 확인하였다.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.