Browse > Article
http://dx.doi.org/10.4313/JKEM.2006.19.2.116

An Atomistic Modeling for Electromechanical Nanotube Memory Study  

Lee, Kang-Whan (한국기술교육대학교 정보기술공학부)
Kwon, Oh-Keun (세명대학교 인터넷정보학부)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.19, no.2, 2006 , pp. 116-125 More about this Journal
Abstract
We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.
Keywords
Nanoelectromechanical memory; NEMS; NRAM; Carbon nanotube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos, 'Solidification of gold nanoparticles in carbon nanotubes', Phys. Rev. Lett., Vol. 94, No. 10, p, 105502, 2005   DOI   ScienceOn
2 P. M. Agrawal, B. M. Rice, and D. L. Thompson, 'Predicting trends in rate parameters for self-diffusion on FCC metal surfaces', Surf. Sci., Vol. 515, Iss. 1, p. 21, 2002   DOI   ScienceOn
3 J. W. Kang, K. R. Byun, and H. J. Hwang, ' Twist of hypothetical silicon nanotubes', Model. Simul. Mater. Sci. Eng., Vol. 12, No. 1, p. 1, 2004   DOI   ScienceOn
4 J. W. Kang and H. J. Hwang, 'Structural properties of caesium encapsulated in carbon nanotubes', Nanotechnology, Vol. 15, No.1, p. us, 2004   DOI   ScienceOn
5 J. W. Kang and H. J. Hwang, 'Fullerene nano ball bearings: an atomistic study', Nanotechnology, Vol. 15, No. 5, p. 614, 2004   DOI   ScienceOn
6 J. W. Kang and H. J. Hwang, ' The electroemission of endo-fullerenes from a nanotube', Nanotechnology, Vol. 15, No. 12, p. 1825, 2004   DOI   ScienceOn
7 J. W. Kang, J. H. Lee, H. J. Lee, and H. J. Hwang, 'A study on carbon nanotube bridge as a electromechanical memory device', Physica E, Vol. 27, Iss. 3, p. 332, 2005   DOI   ScienceOn
8 M. Dequesnes, Z. Tang, and N. R. Aluru, 'Static and dynamic analysis of carbon nanotube-based switches', J. Eng. Mater. Tech., Vol. 126, Iss. 3, p. 230, 2004   DOI   ScienceOn
9 C. Ke and H. D. Espinosa, 'Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multi walled nanotubes ' , J. Appl. Mech., Vol. 72, Iss. 5, p. 721, 2005   DOI   ScienceOn
10 J. W. Kang, J. H. Lee, H. J. Lee, O. K. Kwon, and H. J. Hwang, 'Electromechanical modeling and simulations of nanobridge memory device', Physica E, Vol. 28, Iss. 3, p. 273, 2005   DOI   ScienceOn
11 S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, 'Carbon nanotubes as nanoelectromechanical systems', Phys. Rev. B, Vol. 67, No. 23, p. 235414, 2003   DOI   ScienceOn
12 V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, 'A tunable carbon nanotube electromechanical oscillator', Nature, Vol. 431, No. 7006, p. 284, 2004
13 H. Ustunel, D. Roundy, and T. A. Arias, 'Modeling a suspended nanotube oscillator', Nano Lett., Vol. 5, No. 3, p. 523, 2005   DOI   ScienceOn
14 S. V. Rotkin, V. Shrivastava, K. A. Bulashevich, and N. R. Aluru, 'Atomistic capacitance of a nanotube electromechanical device', Inter. J. Nanosci. Vol. 1, No. 3-4, p. 337, 2002
15 J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
16 J. Tersoff, 'Modeling solid-state chemistry: interatomic potentials for multicomponent systems', Phys. Rev. B, Vol. 39, No. 8, p. 5566, 1989   DOI   ScienceOn
17 D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
18 S. Iijima, 'Helical microtubules of graphitic carbon', Nature, Vol. 354, No. 6348, p. 56, 1991
19 C. Ke and H. D. Espinosa, 'Feedback controlled nanocantilever device', Appl. Phys. Lett., Vol. 85, No. 4, p. 681, 2004   DOI   ScienceOn
20 M. Dequesnes, S. V. Rotkin, and N. R. Aluuru, 'Calculation of pull-in voltages for carbon -nanotube-based nanoelectromechanical switches', Nanotechnology, Vol. 13, No.1, p. 120, 2002   DOI   ScienceOn
21 L. M. Jonsson, T. Nord, J. M. Kinaret, and S. Viefers, 'Effects of surface forces and phonon dissipation in a three-terminal nanorelay', J. Appl. Phys., Vol. 96, No. 1, p. 629, 2004   DOI   ScienceOn
22 L. M. Jonsson, S. Axelsson, T. Nord, S. Viefers, and J. M. Kinaret, 'High frequency properties of a CNT-based nanorelay', Nanotechnology, Vol. 15, No. 11, p. 1497, 2004   DOI   ScienceOn
23 S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, and E. E. B. Campbell, 'A three-terminal carbon nanorelay', Nano Lett., Vol. 4, No. 10, p. 2027, 2004   DOI   ScienceOn
24 H. J. Hwang and J. W. Kang, 'Carbonnanotube-based nanoelectromechanical switch', Physica E, Vol. 27, Iss. 1-2, p. 163, 2005   DOI   ScienceOn
25 J. W. Ward, M. Meinhold, B. M. Segal, J. Berg, R. Sen, R. Sivarajan, D. K. Brock, and T. Rueckes, 'A non-volatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes', in proceedings of 2004 Non Volatile Memory Technology Symposium, Vol. 15, p. 34, 2004
26 J. W. Kang and H. J. Hwang, 'A bucky shuttle three-terminal switching device: classical molecular dynamics study', Physica E, Vol. 23, Iss. 1-2, p. 36, 2004   DOI   ScienceOn
27 W. H. Hayt, 'Engineering Electromagnetics, 5th edition', McGraw Hill International Editions, Singapore, p. 152, 1989
28 A. Maiti and A. Ricca, 'Metal-nanotube interactions - binding energies and wetting properties', Chem. Phys. Lett., Vol. 395, Iss. 1-3, p. 7, 2004   DOI   ScienceOn
29 J. M. Kinaret, T. Nord, and S. Viefers, 'A carbon-nanotube-based nanorelay', Appl. Phys. Lett., Vol. 82, No. 8, p. 1287, 2003   DOI   ScienceOn
30 W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iagrate, 'Handbook of Nanoscience, Engineering, and Technology', CRC Press, New York, p. 23, 2003