Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.4.1035

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor  

Lee, Nam Hee (Department of Chemistry, KAIST)
Ko, Minsu (Nanohelix Co., Ltd.)
Choi, Insung S. (Department of Chemistry, KAIST)
Yun, Wan Soo (Department of Chemistry, Sungkyunkwan University (SKKU))
Publication Information
Abstract
Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.
Keywords
Electric probing; Rolling circle amplification; Aligned-carbon nanotube; Nanobiosensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. J. Am. Chem. Soc. 2005, 127, 12484.   DOI   ScienceOn
2 Patolsky, F.; Zheng, G.; Lieber, C. M. Anal. Chem. 2006, 78, 4260.   DOI   ScienceOn
3 Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.   DOI   ScienceOn
4 Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838.   DOI   ScienceOn
5 Zhou, L.; Ou, L.-J.; Chu, X.; Shen, G.-L.; Yu, R.-Q. Anal. Chem. 2007, 79, 7492.   DOI   ScienceOn
6 Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. Nature Nanotechnology 2007, 2, 230.   DOI   ScienceOn
7 Xiao, J.; Dunham, S.; Liu, P.; Zhang, Y.; Kocabas, C.; Moh, L.; Huang, Y.; Hwang, K.-C.; Lu, C.; Huang, W.; Rogers, J. A. Nano Letters 2009, 9, 4311.   DOI   ScienceOn
8 Ding, L.; Yuan, D.; Liu, J. J. Am. Chem. Soc. 2008, 130, 5428.   DOI   ScienceOn
9 Bradley, K.; Gabriel, J.-C. P.; Grüner, G. Nano Letters 2003, 3, 1353.   DOI   ScienceOn
10 Martiìnez, T. M.; Tseng, Y.-C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Nano Letters 2009, 9, 530.   DOI   ScienceOn
11 Uno, T.; Tabata, H.; Kawai, T. Anal. Chem. 2007, 79, 52.   DOI   ScienceOn