Browse > Article
http://dx.doi.org/10.12989/csm.2017.6.3.335

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete  

Yu, Zechuan (Department of Architecture and Civil Engineering, City University of Hong Kong)
Lau, Denvid (Department of Architecture and Civil Engineering, City University of Hong Kong)
Publication Information
Coupled systems mechanics / v.6, no.3, 2017 , pp. 335-349 More about this Journal
Abstract
To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.
Keywords
carbon nanotube (CNT); fiber-reinforced concrete (FRC); mechanical properties; fire safety;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Palkovic, S.D., Brommer, D.B., Kupwade-Patil, K., Masic, A., Buehler, M.J. and Buyukozturk, O. (2016), "Roadmap across the mesoscale for durable and sustainable cement paste-a bioinspired approach", Constr. Build. Mater., 115, 13-31.   DOI
2 Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., 2013(710175).
3 Pellenq, R.J.M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S. and Ulm, F.J. (2009), "A realistic molecular model of cement hydrates", Proceedings of the National Academy of Sciences, 106(38), 16102-16107.
4 Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19.   DOI
5 Abu Al-Rub, R.K., Ashour, A.I. and Tyson, B.M. (2012), "On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites", Constr. Build. Mater., 35, 647-655.   DOI
6 Betterman, L., Ouyang, C. and Shah, S. (1995), "Fiber-matrix interaction in microfiber-reinforced mortar", Adv. Cement Bas. Mater., 2(2), 53-61.   DOI
7 Prieto Rabade, M., Tanner, P., Andrade Perdrix, M.D.C. and Fernandez, M. (2013), "Experimental and numerical study of bond response in structural concrete with corroded steel bars", Proceedings of the the IABSE Conference Rotterdam: Assessment, Upgrading and Refurbishment of Infrastructures, IABSE Symposium Report, 99(6), 1752-1759, Rotterdam, The Netherlands.
8 Qiu, Q. and Lau, D. (2016), "The sensitivity of acoustic-laser technique for detecting the defects in CFRPbonded concrete systems", J. Nondestruct. Eval., 35(2), 33.   DOI
9 Allen, A.J., Thomas, J.J. and Jennings, H.M. (2007), "Composition and density of nanoscale calciumsilicate-hydrate in cement", Nat. Mater., 6(4), 311-316.   DOI
10 Bangi, M.R. and Horiguchi, T. (2011), "Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures", Cement Concrete Res., 41(11), 1150-1156.   DOI
11 Brandt, A.M. (2008), "Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering", Compos. Struct., 86(1-3), 3-9.   DOI
12 Buyukozturk, O., Buehler, M.J., Lau, D. and Tuakta, C. (2011), "Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface", J. Sol. Struct., 48(14), 2131-2140.   DOI
13 Chiang, W.S., Fratini, E., Baglioni, P., Liu, D. and Chen, S.H. (2012), "Microstructure determination of calcium-silicate-hydrate gobules by small-angle neutron scattering", J. Phys. Chem. C, 116(8), 5055-5061.   DOI
14 Chow, C.L. and Chow, W.K. (2010), "Heat release rate of accidental fire in a supertall building residential flat", Build. Environ., 45(7), 1632-1640.   DOI
15 Shahsavari, R., Pellenq, R.J.M. and Ulm, F.J. (2011), "Empirical force fields for complex hydrated calciosilicate layered materials", Phys. Chem. Chem. Phys., 13(3), 1002-1011.   DOI
16 Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W. and Mioskowski, C. (2003), "Supramolecular selfassembly of lipid derivatives on carbon nanotubes", Sci., 300(5620), 775-778.   DOI
17 Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete-a review", Constr. Build. Mater., 24(11), 2060-2071.   DOI
18 Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421.   DOI
19 Shalchy, F. and Rahbar, N. (2015), "Nanostructural characteristics and interfacial properties of polymer fibers in cement matrix", ACS Appl. Mater. Interf., 7(31), 17278-17286.   DOI
20 Sun, S., Yu, X., Han, B. and Ou, J. (2013), "In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review", Constr. Build. Mater., 49, 835-840.   DOI
21 Tam, L.H. and Lau, D. (2015), "Moisture effect on the mechanical and interfacial properties of epoxybonded material system: An atomistic and experimental investigation", Polym., 57, 132-142.   DOI
22 Fletcher, I.A., Borg, A., Hitchen, N. and Welch, S. (2006), "Performance of concrete in fire: A review of the state of the art, with a case study of the windsor tower fire", Proceedings of the 4th International Workshop in Structures in Fire, Aveiro, Portugal, May, 779-790.
23 Chow, C.L. and Chow, W.K. (2009), "Fire safety aspects of refuge floors in supertall buildings with computational fluid dynamics", J. Civil Eng. Manage., 15(3), 225-236.   DOI
24 Chow, W.K., Gao, Y. and Chow, C.L. (2006), "A review on fire safety in buildings with glass facade", J. Appl. Fire Sci., 16(3), 201-223.   DOI
25 Collins, F., Lambert, J. and Duan, W.H. (2012), "The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(2), 201-207.   DOI
26 Dolado, J.S., Griebel, M., Hamaekers, J. and Heber, F. (2011), "The nano-branched structure of cementitious calcium-silicate-hydrate gel", J. Mater. Chem., 21(12), 4445-4449.   DOI
27 Eftekhari, M., Ardakani, S.H. and Mohammadi, S. (2014), "An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete", Theoret. Appl. Fract. Mech., 72, 64-75.   DOI
28 Gangsa, C., Flanders, L.S. and Landis, E.N. (2015), "A 3D Investigation of ITZ Porosity and Pore Connectivity Relevant to Damage and Transport Properties", Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, 408-413.
29 Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manufact., 39(12), 1876-1883.   DOI
30 Gunes, O., Lau, D., Tuakta, C. and Buyukozturk, O. (2013), "Ductility of FRP-concrete systems: Investigations at different length scales", Constr. Build. Mater., 49, 915-925.   DOI
31 Xie, X.L., Mai, Y.W. and Zhou, X.P. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Mater. Sci. Eng.: R: Rep., 49(4), 89-112.   DOI
32 Tam, L.H. and Lau, D. (2016), "Effect of structural voids on mesoscale mechanics of epoxy-based materials", Multisc. Multiphys. Mech., 1(2), 127-141.   DOI
33 Tam, L.H., Zhou, A., Yu, Z., Qiu, Q. and Lau, D. (2016), "Understanding the effect of temperature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations", Compos. Part B: Eng., 109, 227-237.
34 Wang, J.F. and Liew, K.M. (2015), "On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element", Compos. Struct., 124, 1-9.   DOI
35 Wang, J.F., Zhang, L.W. and Liew, K.M. (2017), "Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites", Comput. Meth. Appl. Mech. Eng., 319, 393-413.   DOI
36 Wei, C., Cho, K. and Srivastava, D. (2003), "Tensile strength of carbon nanotubes under realistic temperature and strain rate", Phys. Rev. B, 67(11), 115407.   DOI
37 Yu, J., Grossiord, N., Koning, C.E. and Loos, J. (2007), "Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution", Carbon, 45(3), 618-623.   DOI
38 Yu, K., Yu, J., Lu, Z. and Chen, Q. (2016), "Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature", Mater. Struct., 49(11), 4517-4532.   DOI
39 Yu, Z. and Lau, D. (2015a), "Development of a coarse-grained ${\alpha}$-chitin model on the basis of MARTINI forcefield", J. Molecul. Model., 21(5), 1-9.
40 Yu, Z. and Lau, D. (2015b), "Molecular dynamics study on stiffness and ductility in chitin-protein composite", J. Mater. Sci., 50(21), 7149-7157.   DOI
41 Hirsch, A. (2002), "Functionalization of single-walled carbon nanotubes", Angewandte Chem. Int. Ed., 41(11), 1853-1859.   DOI
42 Han, B., Sun, S., Ding, S., Zhang, L., Yu, X. and Ou, J. (2015), "Review of nanocarbon-engineered multifunctional cementitious composites", Compos. Part A: Appl. Sci. Manufact., 70, 69-81.   DOI
43 Hansen, T.C. (1965), "Influence of aggregate and voids on modulus of elasticity of concrete, cement mortar, and cement paste", J. Proc., 62(2), 193-216.
44 Heikal, M., Al-Duaij, O.K. and Ibrahim, N.S. (2015), "Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature", Constr. Build. Mater., 93, 1067-1077.   DOI
45 Hlavacek, P., Smilauer, V., Padevet, P., Nasibulina, L. and Nasibulin, A.G. (2011), "Cement grains with surface-shyntetized carbon nanofibres: Mechanical properties and nanostructure", Proceedings of the 3rd International Conference NANOCON, 75-80.
46 Holland, R., Kurtis, K. and Kahn, L. (2016), "Effect of different concrete materials on the corrosion of the embedded reinforcing steel", Corros. Steel Concrete Struct., 131.
47 Hou, D., Zhu, Y., Lu, Y. and Li, Z. (2014), "Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study", Mater. Chem. Phys., 146(3), 503-511.   DOI
48 Hunashyal, A.M., Tippa, S.V., Quadri, S.S. and Banapurmath, N.R. (2011), "Experimental investigation on effect of carbon nanotubes and carbon fibres on the behavior of plain cement mortar composite round bars under direct tension", ISRN Nanotechnol., 6.
49 Kashiwagi, T., Du, F., Winey, K.I., Groth, K.M., Shields, J.R., Bellayer, S.P. and Douglas, J.F. (2005), "Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration", Polym., 46(2), 471-481.   DOI
50 Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499.   DOI
51 Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K. and Douglas, J. (2004), "Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites", Polym., 45(12), 4227-4239.   DOI
52 Khaliq, W. and Kodur, V. (2011), "Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures", Cement Concrete Res., 41(11), 1112-1122.   DOI
53 Kodur, V.K.R. and Phan, L. (2007), "Critical factors governing the fire performance of high strength concrete systems", Fire Safety J., 42(6-7), 482-488.   DOI
54 Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010a), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40(7), 1052-1059.   DOI
55 Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010b), "Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites", Cement Concrete Compos., 32(2), 110-115.   DOI
56 Landis, E., Gangsa, C. and Flanders, L. (2016), "Revisiting critical flaws in cement-based composites", J. Nanomech. Micromech., 6(4), 04016007.   DOI
57 Yurekli, K., Mitchell, C.A. and Krishnamoorti, R. (2004), "Small-angle neutron scattering from surfactantassisted aqueous dispersions of carbon nanotubes", J. Am. Chem. Soc., 126(32), 9902-9903.   DOI
58 Yu, Z. and Lau, D. (2015c), "Nano- and mesoscale modeling of cement matrix", Nanosc. Res. Lett., 10(1), 173.   DOI
59 Yu, Z., Xu, Z. and Lau, D. (2014), "Effect of acidity on chitin-protein interface: A molecular dynamics study", BioNanoSci., 4(3), 207-215.   DOI
60 Yu, Z., Zhou, A. and Lau, D. (2016), "Mesoscopic packing of disk-like building blocks in calcium silicate hydrate", Sci. Rep., 6, 36967.   DOI
61 Metaxa, M.S.K.G. and Shah, S.P. (2010), "Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers", Spec. Publ., 270.
62 Zhang, L.W., Kai, M.F. and Liew, K.M. (2017), "Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures", Compos. Part A: Appl. Sci. Manufact., 95, 286-293.   DOI
63 Lee, J., Mahendra, S. and Alvarez, P.J.J. (2010), "Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations", ACS Nano, 4(7), 3580-3590.   DOI
64 Lau, D., Broderick, K., Buehler, M.J. and Buyukozturk, O. (2014), "A robust nanoscale experimental quantification of fracture energy in a bilayer material system", Proceedings of the National Academy of Sciences, 111(33), 11990-11995.
65 Lau, D. and Buyukozturk, O. (2010), "Fracture characterization of concrete/epoxy interface affected by moisture", Mech. Mater., 42(12), 1031-1042.   DOI
66 Lau, D., Buyukozturk, O. and Buehler, M.J. (2012), "Characterization of the intrinsic strength between epoxy and silica using a multiscale approach", J. Mater. Res., 27(14), 1787-1796.   DOI
67 Lau, D., Qiu, Q., Zhou, A. and Chow, C.L. (2016), "Long term performance and fire safety aspect of FRP composites used in building structures", Constr. Build. Mater., 126(15), 573-585.   DOI
68 Lau, D., Yu, Z. and Buyukozturk, O. (2015), "Mesoscale modeling of cement matrix using the concept of building block", MRS Online Proc. Libr. Arch., 1759.
69 Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245.   DOI
70 Li, Q., Liu, J. and Xu, S. (2015), "Progress in research on carbon nanotubes reinforced cementitious composites", Adv. Mater. Sci. Eng., 16.
71 Lo Monte, F., Bamonte, P. and Gambarova, P.G. (2015), "Physical and mechanical properties of heatdamaged structural concrete containing expanded polystyrene syntherized particles", Fire Mater., 39(1), 58-71.   DOI
72 Metaxa, Z.S., Konsta-Gdoutos, M.S. and Shah, S.P. (2013), "Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency", Cement Concrete Compos., 36, 25-32.   DOI
73 Lu, Z., Hou, D., Meng, L., Sun, G., Lu, C. and Li, Z. (2015), "Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties", RSC Adv., 5(122), 100598-100605.   DOI
74 Ludvig, P., Calixto, J.M., Ladeira, L.O. and Gaspar, I.C.P. (2011), "Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis", Mater., 4(3), 575.   DOI
75 Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites", Phys. Status Sol. (a), 206(12), 2783-2790.
76 Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manufact., 41(10), 1345-1367.   DOI
77 Masoero, E., Gado, E., Pellenq, R.M., Ulm, F.J. and Yip, S. (2012), "Nanostructure and nanomechanics of cement: Polydisperse colloidal packing", Phys. Rev. Lett., 109(15), 155503.   DOI
78 Metaxa, Z.S., Seo, J.W.T., Konsta-Gdoutos, M.S., Hersam, M.C. and Shah, S.P. (2012), "Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials", Cement Concrete Compos., 34(5), 612-617.   DOI
79 Mudimela, P.R., Nasibulina, L.I., Nasibulin, A.G., Cwirzen, A., Valkeap, M. and Kauppinen, E.I. (2009), "Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials", J. Nanomater., 29, 1-4.
80 Mukhopadhyay, A.K. (2011), "Next-generation nano-based concrete construction products: A review", Nanotechnology in Civil Infrastructure: A Paradigm Shift, 207-223, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.
81 Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., 69(11-12), 1985-1990.   DOI
82 Nadiv, R., Shtein, M., Refaeli, M., Peled, A. and Regev, O. (2016), "The critical role of nanotube shape in cement composites", Cement Concrete Compos., 71, 166-174.   DOI
83 Oesch, T., Landis, E. and Kuchma, D. (2016), "Conventional concrete and UHPC performance-damage relationships identified using computed tomography", J. Eng. Mech., 142(12), 04016101.   DOI
84 Nasibulin, A.G., Koltsova, T., Nasibulina, L.I., Anoshkin, I.V., Semencha, A., Tolochko, O.V. and Kauppinen, E.I. (2013), "A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles", Acta Mater., 61(6), 1862-1871.   DOI
85 Ngo, M., Ibrahimbegovic, A. and Brancherie, D. (2014), "Thermomechanics failure of RC composites: Computational approach with enhanced beam model", Coupled Syst. Mech., 3(1), 111-145.   DOI
86 Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Surf. Sci., 257(6), 1941-1945.   DOI