• Title/Summary/Keyword: Carbon 13 NMR

Search Result 132, Processing Time 0.031 seconds

Nitrogen-doped carbon nanosheets from polyurethane foams and removal of Cr(VI)

  • Duan, Jiaqi;Zhang, Baohua;Fan, Huailin;Shen, Wenzhong;Qu, Shijie
    • Carbon letters
    • /
    • v.22
    • /
    • pp.60-69
    • /
    • 2017
  • Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following $ZnCl_2$ chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state $^{13}C$ nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).

Synthesis and Properties of Conjugated Cyclopolymers Bearing Fluorene Derivatives

  • Gal Yeong-Soon;Jin Sung-Ho;Lee Hyo-San;Kim Sang Youl
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.491-498
    • /
    • 2005
  • Fluorene-containing, spiro-type, conjugated polymers were synthesized via the cyclopolymerization of dipropargylfluorenes (2-substituted, X=H, Br, Ac, $ NO_{2}$) with various transition metal catalysts. The polymerization of dipropargylfluorenes proceeded well using Mo-based catalysts to give a high polymer yield. The catalytic activities of the Mo-based catalysts were found to be more effective than those of W-based catalysts. The palladium (II) chloride also increased the polymer yield of the polymerization. The polymer structure of poly(dipropargylfluorene)s was characterized by such instrumental methods as NMR ($^{1}H_{-}$, $^{13}C_{-}$), IR, UV-visible spectroscopies, and elemental analysis as having the conjugated polymer backbone bearing fluorene moieties. The $^{13}C_{-}$NMR spectral data on the quaternary carbon atoms in polymers indicated that the conjugated cyclopolymers have the six-membered rings majorly. The poly(dipropargylfluorene) derivatives were completely soluble in halogenated and aromatic hydrocarbons such as methylene chloride, chloroform, benzene, toluene, and chlorobenzene. The poly(dipropargylfluorene) derivatives were thermally more stable than poly(dipropargylfluorene) itself, and X-ray diffraction analyses revealed that the polymers are mostly amorphous. The photoluminescence peaks of the polymers were observed at about 457-491 nm, depending on the substituents of fluorene moieties.

Assignment of ¹H and $^{13}C$ Nuclear Magnetic Resonances of Ganglioside $G_{A1}$

  • 이경익;전길자;류경임;방은정;최병석;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.864-869
    • /
    • 1995
  • Investigation of the structures of the gangliosides has proven to be very important in the understanding of their biological roles such as regulation of differentiation and growth of cells. We used nuclear magnetic resonance spectros-copy in order to investigate the structure of GA1. In order to do this, the assignment of spectra is a prerequisite. Since GA1 does not have polar sialic acid, the spectral overlap is severe. In order to solve this problem, we use 2D NMR spectroscopy and heteronuclear 1H/13C correlated spectroscopy in this study. Here, we report the complete assignment of the proton and the carbon spectra of the GA1 in DMSO-d6-D20 (98:2, v/v). These assignments will be useful for interpreting 1H and 13C NMR data from uncharacterized oligosaccharides and for determining the linkage position, the number of sugar rings, and the sequence of new ganglioside. Amide proton in ring Ⅲ shows many interring nOes and has intramolecular hydrogen bonding. This appears to be an important factor in tertiary folding of GA1. Based on this assignment, determination of three dimensional structure of GA1 will be carried out. Studies on the conformational properties of GA1 may lead to a better understanding of the molecular basis of its functions.

Effects of Reaction pH and Hardener Type on Reactivity, Properties, and Performance of Urea-Formaldehyde (UF) Resin

  • Park, Byung-Dae;Kim, Yoon Soo;So, Won Tek;Lim, Kie Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • This study was conducted to investigate the effects of reaction pH conditions and hardener types on the reactivity, chemical structure and adhesion performance of UF resins. Three different reaction pH conditions, such as traditional alkaline-acid (7.5 → 4.5), weak acid (4.5), and strong acid (1.0), were used to synthesize UF resins which were cured by adding three different hardeners (ammonium chloride, ammonium citrate, and zinc nitrate) to measure adhesion strength. Fourier transform infrared (FT-IR) and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopies were employed to study chemical structure of the resin prepared under three different reaction pH conditions. Adhesion strength of the resins cured with three different hardeners was determined with lap shear specimens in tension. The gel time of UF resins decreased with an increasing in the amount of both ammonium chloride and ammonium citrate added in the resins. However, the gel time increased for zinc nitrate. Both FT-IR and 13C-NMR spectroscopies showed that the strong reaction pH condition produce uronic structures in UF resin, while both alkaline-acid and weak acid conditions produce quite similar chemical species in the resins. The maximum adhesion strength was occurred with the resin prepared under strong acid pH condition. However, this study indicated that the weak acid reaction condition provide a balance between increasing resin reactivity and improving adhesion strength of UF resin. The measurement of formaldehyde emission from the panels bonded with the UF resins prepared is planned for future work.

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance (핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;KIM, YOUNGEUN;NAM, SUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.562-570
    • /
    • 2016
  • At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

Structure determination of two new compounds isolated from a marine sponge Haliclona(Gellius) sp.

  • Lee, Kyung;Kim, Yun Na;Jeong, Eun Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.24-32
    • /
    • 2021
  • Two new sesterterpenes, including a known sesterterpene, were isolated from the marine sponge Haliclona sp. collected in the Gageo island, Korea. One of the new sesterterpenes (1) was an unusual compound possessing a spiroketal moiety and the other (2) represented a four ring-fused skeleton. The planar structure of compound 1 was identical to gombaspiroketals A and B isolated from the marine sponge Clathria gombawuiensis, but the configuration for the two chiral centers was different each other. On the other hand, the skeletal structure of compound 2 was similar to that of phorone A isolated from Phorbas sp. and a compound from C. gombawuiensis, except for one configuration at C-8. However, in comparing the 1H and 13C NMR spectral data, the proton and carbon chemical shifts for the three compounds were almost consistent. The NOESY spectrum revealed that the C-8 configuration of 2 was reversed to that of the two reported compounds. The configuration for compound 2 was supported by quantum mechanical calculation for the carbon chemical shifts and DP4+ probability for the protons and carbons of 2.

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.

Isolation of Antimicrobial Substance by Produced Bacillus sp. SD-10 with Antagonistic Activity Towards Mushroom Pathogens (버섯병원균에 대한 길항세균 Bacillus sp. SD-10이 생산하는 항균물질의 분리)

  • 이상원;류현순;갈상완;박기훈;김철호;최영주
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.467-471
    • /
    • 2004
  • Bacillus sp. SD-10 was investigated to develope biological pesticides for control of mushroom diseases. Bacillus sp. SD-10 showed high antifungal activity when cultured at 35∼4$0^{\circ}C$ for 30∼4$0^{\circ}C$. The culture filtrate of the bacterium inhibited the growth of mycelium of T. virens which is a kind of mushroom pathogene. On the test of inhibition of spore germination of T. virens, more than 5% of the culture filtrate in the media inhibited completely the germination of the spores. An antimicrobial substance, UPX-1 was purified from the culture filtrate of the Bacillus. From the $^1H$-NMR and $^{13}C$-NMR spectrum analysis, the substance was indentifed as disaccharide composed to six carbon sugars. UPX-1 has not only strong antifungal activity against T. virens but also antibacterial activity against Pseudomonas tolaassi.

Synthesis and Characterization of Novel Oxadiazole Derivatives from Benzimidazole

  • Vishwanathan, Balasubramanaya;Gurupadayya, Bannimath
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.450-455
    • /
    • 2014
  • In the present study, a series of novel N-(1H-benzo[d]imidazol-2-yl)methyl-5-[(hetero)aryl-1,3,4-oxadiazol-2-yl]methanamine (4a-4j) were efficiently synthesized. Condensation of hydrazide derivative 3 with various carboxylic acid derivatives yielded N-[(1H-benzo[d]imidazol-2-yl)methy](5-substituted-1,3,4-oxadiazol-2-yl)methanamine (4a-4j) and compound 5-{[(1H-benzo[d]imidazol-2-yl)methylamino]methyl}-1,3,4-oxadiazole-2-thiol (4k) was obtained on treating hydrazide 3 with carbon disulfide. All the newly synthesized analogues were characterized by IR, $^1H$ NMR, $^{13}C$ NMR and mass spectral data.

Synthesis and the Absolute Configurations of Isoflavanone Enantiomers

  • Won, Dong-Ho;Shin, Bok-Kyu;Han, Jae-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.17-19
    • /
    • 2008
  • Isoflavanone has been synthesized from the reduction of isoflavone in nearly quantitative yield. Isoflavone with seven equivalents of ammonium formate in the presence of Pd/C in ethanol under $N_2$ atmosphere exclusively produced the two-electron reduced product in two hours. It was characterized by various spectroscopic methods, including UV-VIS, EI-MS, $^1H$-NMR, $^{13}C$-NMR and $^1H$, $^1H$-COSY. The racemic mixture was separated by Sumi-Chiral column chromatography and the absolute configurations of the enantiomers were characterized by circular dichroism spectroscopy.