Browse > Article

Synthesis and Properties of Conjugated Cyclopolymers Bearing Fluorene Derivatives  

Gal Yeong-Soon (Polymer Chemistry Laboratory, College of Engineering, Kyungil University)
Jin Sung-Ho (Department of Chemical Education, Pusan National University)
Lee Hyo-San (Department of Chemistry, Korea Advanced Institute of Science and Technology)
Kim Sang Youl (Department of Chemistry, Korea Advanced Institute of Science and Technology)
Publication Information
Macromolecular Research / v.13, no.6, 2005 , pp. 491-498 More about this Journal
Abstract
Fluorene-containing, spiro-type, conjugated polymers were synthesized via the cyclopolymerization of dipropargylfluorenes (2-substituted, X=H, Br, Ac, $ NO_{2}$) with various transition metal catalysts. The polymerization of dipropargylfluorenes proceeded well using Mo-based catalysts to give a high polymer yield. The catalytic activities of the Mo-based catalysts were found to be more effective than those of W-based catalysts. The palladium (II) chloride also increased the polymer yield of the polymerization. The polymer structure of poly(dipropargylfluorene)s was characterized by such instrumental methods as NMR ($^{1}H_{-}$, $^{13}C_{-}$), IR, UV-visible spectroscopies, and elemental analysis as having the conjugated polymer backbone bearing fluorene moieties. The $^{13}C_{-}$NMR spectral data on the quaternary carbon atoms in polymers indicated that the conjugated cyclopolymers have the six-membered rings majorly. The poly(dipropargylfluorene) derivatives were completely soluble in halogenated and aromatic hydrocarbons such as methylene chloride, chloroform, benzene, toluene, and chlorobenzene. The poly(dipropargylfluorene) derivatives were thermally more stable than poly(dipropargylfluorene) itself, and X-ray diffraction analyses revealed that the polymers are mostly amorphous. The photoluminescence peaks of the polymers were observed at about 457-491 nm, depending on the substituents of fluorene moieties.
Keywords
catalysts; conjugated polymer; cyclopolymerization; polyacetylenes; photoluminescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 T. Masuda and T. Higashimura, Acc. Chem. Res., 17, 51 (1981)   DOI
2 S. K. Choi, Y. S. Gal, S. H. Jin, and H. K. Kim, Chem. Rev., 100, 1645 (2000)   DOI   ScienceOn
3 Y. S. Gal, S. H. Jin, W. C. Lee, and S. Y. Kim, Macromol. Res., 12, 407 (2004)   DOI
4 Y. S. Gal, S. H. Jin, K. T. Lim, S. H. Kim, and K. Koh, Curr. Appl. Phys., 5, 38 (2005)   DOI   ScienceOn
5 K. K. L. Cheuk, J. W. Y. Lam, J. Chen, L. M. Lai, and B. Z. Tang, Macromolecules, 36, 5947 (2003)   DOI   ScienceOn
6 S. H. Jin, J. W. Park, S. K. Choi, H. N. Cho, S. Y. Park, N. J. Kim, T. Wada, and H. Sasabe, Mol. Cryst. Liq. Cryst., 247, 129 (1994)   DOI
7 K. Tada, R. Hidayat, M. Hirohata, M. Teraguchi, T. Masuda, and K. Yoshino, Jpn. J. Appl. Phys., 35, L1138 (1996)   DOI
8 Y. S. Gal, T. L. Gui, S. H. Jin, J. W. Park, K. N. Koh, W. C. Lee, S. H. Kim, and S. Y. Kim, Syn. Met., 135-136, 353 (2003)   DOI   ScienceOn
9 Y. S. Gal and S. H. Jin, Bull. Korean Chem. Soc., 25, 777 (2004)   DOI
10 G. B. Gibson, F. C. Bailey, A. J. Epstein, H. Rommelmann, S. Kaplan, and J. M. Pochan, J. Am. Chem. Soc., 105, 4417 (1983)   DOI   ScienceOn
11 Y. S. Gal, S. H. Jin, H. J. Lee, S. H. Kim, W. C. Lee, and S. K. Choi, Macromol. Res., 11, 80 (2003)   DOI
12 S. H. Jin, J. Y. Jin, Y. I. Kim, D. K. Park, and Y. S. Gal, Macromol. Res., 11, 501 (2003)   DOI
13 C. L. Chiang and C. F. Shu, Chem. Mat., 14, 682 (2002)   DOI   ScienceOn
14 S. K. Choi, J. H. Lee, S. J. Kang, and S. H. Jin, Prog. Polym. Sci., 22, 693 (1997)   DOI   ScienceOn
15 N. G. Pschirer and U. H. F. Bunz, Macromolecules, 33, 3961 (2000)   DOI   ScienceOn
16 M. Teraguchi, J. I. Suzuki, T. Kaneko, T. Aoki, and T. Masuda, Macromolecules, 36, 9694 (2003)   DOI   ScienceOn
17 Y. S. Gal, S. H. Jin, J. W. Park, W. C. Lee, H. S. Lee, and S. Y. Kim, J. Polym. Sci.; Part A: Polym. Chem., 39, 4101 (2001)   DOI   ScienceOn
18 Y. S. Gal, Eur. Polym. J., 36, 2059 (2000)   DOI   ScienceOn
19 J.-L. Bredas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev., 104, 4971 (2004)   DOI   ScienceOn
20 S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, and Y. S. Gal, J. Am. Chem. Soc., 126, 2474 (2004)   DOI   ScienceOn
21 J. K. Stille and D. A. Frey, J. Am. Chem. Soc., 83, 1697 (1961)   DOI
22 S. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993)   DOI   ScienceOn
23 A. Furlani, G. Iucci, M. V. Russo, A. Bearzotti, and A. D'Amico, Sensors and Actuators B, 7, 447 (1992)   DOI   ScienceOn
24 Y. S. Gal, S. H. Jin, S. H. Kim, H. J. Lee, K. N. Koh, S. H. Kim, D. W. Kim, J. M. Ko, J. H. Chun, and S. Y. Kim, J. Macromol. Sci.-Pure Appl. Chem., A39, 237 (2002)
25 Y. S. Gal and S. K. Choi, J. Appl. Polym. Sci., 50, 601 (1993)   DOI   ScienceOn
26 Y. S. Gal, S. H. Jin, S. H. Kim, H. J. Lee, S. Y. Shim, and K. T. Lim, J. Ind. Eng. Chem., 10, 911 (2004)
27 T. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci.; Part A: Polym. Chem., 12, 11 (1974)   DOI   ScienceOn
28 Y. S. Gal, S. H. Jin, and S. K. Choi, J. Mol. Cat. A: Chem., 213, 115 (2004)   DOI   ScienceOn
29 T. Masuda and T. Higashimura, Adv. Polym. Sci., 81, 121 (1981)   DOI
30 M. R. Buchmeiser, Adv. Polym. Sci., 176, 89 (2005)
31 S. H. Jin, D. S. Koo, C. K. Hwang, J. Y. Do, Y. I. Kim, Y. S. Gal, J. W. Lee, and J. T. Hwang, Macromol. Res., 13, 114 (2005)   DOI
32 D. W. Samuel, I. Ledoux, C. Dhenaut, J. Zyss, H. H. Fox, R. R. Schrock, and R. J. Silbey, Science, 265, 1070 (1994)   DOI
33 M. G. Mayershofer and O. Nuyken, J. Polym. Sci.; Part A:Polym. Chem., 43, 5723 (2005)   DOI   ScienceOn
34 H. H. Fox, M. O. Wolf, R. O'Dell, B. L. Lin, R. R. Schrock, and M. S. Wrightton, J. Am. Chem. Soc., 116, 2827 (1994)   DOI   ScienceOn
35 G. B. Butler, Acc. Chem. Res., 15, 370 (1982)   DOI
36 C. C. W. Law, J. W. Y. Lam, Y. Dong, H. Tong, and B. Z. Tang, Macromolecules, 38, 660 (2005)   DOI   ScienceOn
37 G. J. Tregre and L. J. Mathias, J. Polym. Sci.; Part A: Polym. Chem., 35, 587 (1997)   DOI   ScienceOn
38 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)   DOI
39 J. W. Y. Lam, C. K. Law, Y. Dong, J. Wang, W. Ge, and B. Z. Tang, Opt. Mat., 21, 321 (2002)   DOI
40 T. L. Gui, S. H. Jin, J. W. Park, K. T. Lim, S. Y. Kim, and Y. S. Gal, Mat. Sci. Eng. C., 24, 217 (2004)   DOI
41 C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, and H. Shirakawa, J. Am. Chem. Soc., 100, 1013 (1978)   DOI
42 H. N. Cho, D. Y. Kim, Y. C. Kim, J. Y. Lee, and C. Y. Kim, Adv. Mat., 9, 326 (1997)   DOI
43 H. J. Lee, S. J. Kang, H. K. Kim, H. N. Cho, J. T. Park, and S. K. Choi, Macromolecules, 28, 4638 (1995)   DOI   ScienceOn
44 C. Halvorson, A. Hays, B. Kraabel, R. Wu, F. Wudl, and A. J. Heeger, Science, 265, 1215 (1994)   DOI
45 J. W. Y. Lam and B. Z. Tang, Acc. Chem. Res., 38, 745 (2005)   DOI   ScienceOn
46 H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001)   DOI   ScienceOn