Synthesis and Properties of Conjugated Cyclopolymers Bearing Fluorene Derivatives

  • Gal Yeong-Soon (Polymer Chemistry Laboratory, College of Engineering, Kyungil University) ;
  • Jin Sung-Ho (Department of Chemical Education, Pusan National University) ;
  • Lee Hyo-San (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Kim Sang Youl (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 2005.12.01

Abstract

Fluorene-containing, spiro-type, conjugated polymers were synthesized via the cyclopolymerization of dipropargylfluorenes (2-substituted, X=H, Br, Ac, $ NO_{2}$) with various transition metal catalysts. The polymerization of dipropargylfluorenes proceeded well using Mo-based catalysts to give a high polymer yield. The catalytic activities of the Mo-based catalysts were found to be more effective than those of W-based catalysts. The palladium (II) chloride also increased the polymer yield of the polymerization. The polymer structure of poly(dipropargylfluorene)s was characterized by such instrumental methods as NMR ($^{1}H_{-}$, $^{13}C_{-}$), IR, UV-visible spectroscopies, and elemental analysis as having the conjugated polymer backbone bearing fluorene moieties. The $^{13}C_{-}$NMR spectral data on the quaternary carbon atoms in polymers indicated that the conjugated cyclopolymers have the six-membered rings majorly. The poly(dipropargylfluorene) derivatives were completely soluble in halogenated and aromatic hydrocarbons such as methylene chloride, chloroform, benzene, toluene, and chlorobenzene. The poly(dipropargylfluorene) derivatives were thermally more stable than poly(dipropargylfluorene) itself, and X-ray diffraction analyses revealed that the polymers are mostly amorphous. The photoluminescence peaks of the polymers were observed at about 457-491 nm, depending on the substituents of fluorene moieties.

Keywords

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  2. S. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993) https://doi.org/10.1038/365628a0
  3. S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, and Y. S. Gal, J. Am. Chem. Soc., 126, 2474 (2004) https://doi.org/10.1021/ja037954k
  4. J.-L. Bredas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev., 104, 4971 (2004) https://doi.org/10.1021/cr040084k
  5. S. H. Jin, D. S. Koo, C. K. Hwang, J. Y. Do, Y. I. Kim, Y. S. Gal, J. W. Lee, and J. T. Hwang, Macromol. Res., 13, 114 (2005) https://doi.org/10.1007/BF03219024
  6. T. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci.; Part A: Polym. Chem., 12, 11 (1974) https://doi.org/10.1002/pol.1974.170120102
  7. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001) https://doi.org/10.1002/1521-3773(20010105)40:1<1::AID-ANIE1>3.0.CO;2-F
  8. T. Masuda and T. Higashimura, Acc. Chem. Res., 17, 51 (1981) https://doi.org/10.1021/ar00098a002
  9. T. Masuda and T. Higashimura, Adv. Polym. Sci., 81, 121 (1981) https://doi.org/10.1007/BFb0037614
  10. S. K. Choi, J. H. Lee, S. J. Kang, and S. H. Jin, Prog. Polym. Sci., 22, 693 (1997) https://doi.org/10.1016/S0079-6700(97)00002-6
  11. S. K. Choi, Y. S. Gal, S. H. Jin, and H. K. Kim, Chem. Rev., 100, 1645 (2000) https://doi.org/10.1021/cr960080i
  12. M. G. Mayershofer and O. Nuyken, J. Polym. Sci.; Part A:Polym. Chem., 43, 5723 (2005) https://doi.org/10.1002/pola.20993
  13. J. W. Y. Lam and B. Z. Tang, Acc. Chem. Res., 38, 745 (2005) https://doi.org/10.1021/ar040012f
  14. M. R. Buchmeiser, Adv. Polym. Sci., 176, 89 (2005)
  15. Y. S. Gal, S. H. Jin, and S. K. Choi, J. Mol. Cat. A: Chem., 213, 115 (2004) https://doi.org/10.1016/j.molcata.2003.10.055
  16. Y. S. Gal, S. H. Jin, W. C. Lee, and S. Y. Kim, Macromol. Res., 12, 407 (2004) https://doi.org/10.1007/BF03218419
  17. C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, and H. Shirakawa, J. Am. Chem. Soc., 100, 1013 (1978) https://doi.org/10.1021/ja00471a057
  18. Y. S. Gal and S. K. Choi, J. Appl. Polym. Sci., 50, 601 (1993) https://doi.org/10.1002/app.1993.070500404
  19. Y. S. Gal, S. H. Jin, K. T. Lim, S. H. Kim, and K. Koh, Curr. Appl. Phys., 5, 38 (2005) https://doi.org/10.1016/j.cap.2003.11.069
  20. M. Teraguchi, J. I. Suzuki, T. Kaneko, T. Aoki, and T. Masuda, Macromolecules, 36, 9694 (2003) https://doi.org/10.1021/ma035493h
  21. K. K. L. Cheuk, J. W. Y. Lam, J. Chen, L. M. Lai, and B. Z. Tang, Macromolecules, 36, 5947 (2003) https://doi.org/10.1021/ma0344543
  22. H. J. Lee, S. J. Kang, H. K. Kim, H. N. Cho, J. T. Park, and S. K. Choi, Macromolecules, 28, 4638 (1995) https://doi.org/10.1021/ma00117a039
  23. A. Furlani, G. Iucci, M. V. Russo, A. Bearzotti, and A. D'Amico, Sensors and Actuators B, 7, 447 (1992) https://doi.org/10.1016/0925-4005(92)80341-T
  24. S. H. Jin, J. W. Park, S. K. Choi, H. N. Cho, S. Y. Park, N. J. Kim, T. Wada, and H. Sasabe, Mol. Cryst. Liq. Cryst., 247, 129 (1994) https://doi.org/10.1080/10587259408039198
  25. D. W. Samuel, I. Ledoux, C. Dhenaut, J. Zyss, H. H. Fox, R. R. Schrock, and R. J. Silbey, Science, 265, 1070 (1994) https://doi.org/10.1126/science.265.5175.1070
  26. C. Halvorson, A. Hays, B. Kraabel, R. Wu, F. Wudl, and A. J. Heeger, Science, 265, 1215 (1994) https://doi.org/10.1126/science.265.5176.1215
  27. K. Tada, R. Hidayat, M. Hirohata, M. Teraguchi, T. Masuda, and K. Yoshino, Jpn. J. Appl. Phys., 35, L1138 (1996) https://doi.org/10.1143/JJAP.35.996
  28. J. W. Y. Lam, C. K. Law, Y. Dong, J. Wang, W. Ge, and B. Z. Tang, Opt. Mat., 21, 321 (2002) https://doi.org/10.1016/S0925-3467(02)00157-X
  29. Y. S. Gal, T. L. Gui, S. H. Jin, J. W. Park, K. N. Koh, W. C. Lee, S. H. Kim, and S. Y. Kim, Syn. Met., 135-136, 353 (2003) https://doi.org/10.1016/S0379-6779(02)00540-4
  30. T. L. Gui, S. H. Jin, J. W. Park, K. T. Lim, S. Y. Kim, and Y. S. Gal, Mat. Sci. Eng. C., 24, 217 (2004) https://doi.org/10.1016/j.msec.2003.09.055
  31. Y. S. Gal and S. H. Jin, Bull. Korean Chem. Soc., 25, 777 (2004) https://doi.org/10.5012/bkcs.2004.25.6.777
  32. G. B. Butler, Acc. Chem. Res., 15, 370 (1982) https://doi.org/10.1021/ar00083a005
  33. J. K. Stille and D. A. Frey, J. Am. Chem. Soc., 83, 1697 (1961) https://doi.org/10.1021/ja01468a034
  34. Y. S. Gal, S. H. Jin, S. H. Kim, H. J. Lee, S. Y. Shim, and K. T. Lim, J. Ind. Eng. Chem., 10, 911 (2004)
  35. G. B. Gibson, F. C. Bailey, A. J. Epstein, H. Rommelmann, S. Kaplan, and J. M. Pochan, J. Am. Chem. Soc., 105, 4417 (1983) https://doi.org/10.1021/ja00351a048
  36. Y. S. Gal, S. H. Jin, H. J. Lee, S. H. Kim, W. C. Lee, and S. K. Choi, Macromol. Res., 11, 80 (2003) https://doi.org/10.1007/BF03218334
  37. S. H. Jin, J. Y. Jin, Y. I. Kim, D. K. Park, and Y. S. Gal, Macromol. Res., 11, 501 (2003) https://doi.org/10.1007/BF03218983
  38. C. C. W. Law, J. W. Y. Lam, Y. Dong, H. Tong, and B. Z. Tang, Macromolecules, 38, 660 (2005) https://doi.org/10.1021/ma0475481
  39. H. N. Cho, D. Y. Kim, Y. C. Kim, J. Y. Lee, and C. Y. Kim, Adv. Mat., 9, 326 (1997) https://doi.org/10.1002/adma.19970091219
  40. G. J. Tregre and L. J. Mathias, J. Polym. Sci.; Part A: Polym. Chem., 35, 587 (1997) https://doi.org/10.1002/(SICI)1099-0518(199702)35:3<587::AID-POLA25>3.0.CO;2-J
  41. N. G. Pschirer and U. H. F. Bunz, Macromolecules, 33, 3961 (2000) https://doi.org/10.1021/ma0003250
  42. C. L. Chiang and C. F. Shu, Chem. Mat., 14, 682 (2002) https://doi.org/10.1021/cm010665f
  43. Y. S. Gal, S. H. Jin, J. W. Park, W. C. Lee, H. S. Lee, and S. Y. Kim, J. Polym. Sci.; Part A: Polym. Chem., 39, 4101 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  44. Y. S. Gal, Eur. Polym. J., 36, 2059 (2000) https://doi.org/10.1016/S0014-3057(99)00265-7
  45. Y. S. Gal, S. H. Jin, S. H. Kim, H. J. Lee, K. N. Koh, S. H. Kim, D. W. Kim, J. M. Ko, J. H. Chun, and S. Y. Kim, J. Macromol. Sci.-Pure Appl. Chem., A39, 237 (2002)
  46. H. H. Fox, M. O. Wolf, R. O'Dell, B. L. Lin, R. R. Schrock, and M. S. Wrightton, J. Am. Chem. Soc., 116, 2827 (1994) https://doi.org/10.1021/ja00086a016