DOI QR코드

DOI QR Code

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance

핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석

  • CHOI, JEONGHO (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • YOON, YEOIL (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • PARK, SUNGYOUL (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • BAEK, ILHYUN (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • KIM, YOUNGEUN (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • NAM, SUNGCHAN (Green Energy Process Laboratory, Korea Institute of Energy Research)
  • Received : 2016.09.20
  • Accepted : 2016.10.30
  • Published : 2016.10.30

Abstract

At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

Keywords

References

  1. M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J-M. Amann, C. Bouallou, "Precombustion, post-combustion and oxy-combustion in thermal power plant for $CO_2$ capture", Applied Thermal Engineering, Vol. 30, No. 1, 2010, p. 53. https://doi.org/10.1016/j.applthermaleng.2009.05.005
  2. Q. Zhou, J. Koiwanit, L. Piewkhaow, A. Manuilova, C. W. Chan, M. Wilson, P. Tontiwachwuthikul, "A Comparative of life cycle assessment of postcombustion, pre-combustion and oxy-fuel $CO_2$ capture", Energy Procedia, Vol. 63, 2014, p. 7452. https://doi.org/10.1016/j.egypro.2014.11.782
  3. C. Fu, T. Gundersen, "Heat integration of an oxy-combustion process for coal gired power plants with $CO_2$ capture by pinch analysis", Chemical Engineering Transactions, Vol. 21, 2010, p. 181.
  4. C-H. Yu, C-H. Huang, C-S. Tan, "A review of $CO_2$ capture by absorption and adsorption" Aerosol and Air Quality Research, Vol. 12, No. 5, 2012, p. 745.
  5. J. Davis, G. Rochelle, "Thermal degradation of monoethanolamine at stripper conditions", Energy Procedia, Vol. 1, No. 1, 2009, p. 327. https://doi.org/10.1016/j.egypro.2009.01.045
  6. G. T. Rochelle, "Amine scrubbing for $CO_2$ capture", Science, Vol. 325, 2009, p. 1652. https://doi.org/10.1126/science.1176731
  7. G. Leonard, D. Toye, G. Heyen, "Experimental study and kinetic model of monoethanolamine oxidative and thermal degradation for post-combustion $CO_2$ capture", Vol. 30, 2014, p. 171. https://doi.org/10.1016/j.ijggc.2014.09.014
  8. S Chi, G. T. Rochelle "Oxidative degradation of monoethanolamine", Industrial & Engineering Chemistry Research, Vol. 41, No. 17, 2002, p. 4178. https://doi.org/10.1021/ie010697c
  9. H Liu, O. A. Namjoshi, G. T. Rochelle, "Oxidative degradation of amine solvents for $CO_2$ capture", Energy Procedia, Vol. 63, 2014, p. 1546. https://doi.org/10.1016/j.egypro.2014.11.164
  10. A. F. Ciftja, A. Hartono, A. Grimstvedt, H. F. Svendsen, "NMR study on the oxidative degradation of MEA in presence of $Fe^{2+}$", Energy Procedia, Vol. 23, 2012, p. 111. https://doi.org/10.1016/j.egypro.2012.06.064
  11. I. Y. Lee, N. S. Kwak, J. H. Lee, K. R. Jang, J. G. Shim, "Oxidative degradation of alkanolamines with inhibitors in $CO_2$ capture process", Energy Procedia, Vol. 37, 2013, p. 1830. https://doi.org/10.1016/j.egypro.2013.06.061
  12. G. T. Rochelle, "Thermal degradation of amines of $CO_2$ capture", Current Opinion in Chemical Engineering, Vol. 1, No. 2, 2012, p. 183. https://doi.org/10.1016/j.coche.2012.02.004
  13. S. Zhou, S. Wang, C. Chen "Thermal degradation of monoethanolamine in $CO_2$ capture with acidic impurities in flue gas", Industrial & Engineering Chemistry Research, Vol. 51, No. 6, 2012, p. 2539. https://doi.org/10.1021/ie202214y
  14. K-S. Zoannou, D. J. Sapsford, A. J. Griffiths, "Thermal degradation of monoethanolamine and its effect on $CO_2$ capture capacity", International Journal of Greenhouse Gas Control, Vol. 17, 2013, p. 423. https://doi.org/10.1016/j.ijggc.2013.05.026
  15. C. Gouedard, D. Picq, F. Launay, P.-L. Carrette "Amine degradation in $CO_2$ capture. I. A review", International Journal of Greenhouse Gas Control, Vol. 10, 2012, p. 244. https://doi.org/10.1016/j.ijggc.2012.06.015
  16. S. A. Mazari, B. S. Ali, B. M. Jan, I. M. Saeed, "Degradation study of piperazine, its blends and structural analogs for $CO_2$ capture : A review", International Journal of Greenhouse Gas Control, Vol. 31, 2014, p. 214. https://doi.org/10.1016/j.ijggc.2014.10.003
  17. S. A. Freeman, G. T. Rochelle, "Thermal degradation of piperazine and its structural analogs", Energy Procedia, Vol. 4, 2011, p 43. https://doi.org/10.1016/j.egypro.2011.01.021
  18. Y. Zhang, J. Xu, Y. Zhang, J. Zhang, Q. Li,H. Liu, M. Shang, "Health risk analysis of nitrosamine emissions from $CO_2$ capture with monoethanolamine in coal-fired power plants", International Journal of Greenhouse Gas Control, Vol. 20, 2014, p. 37. https://doi.org/10.1016/j.ijggc.2013.09.016
  19. E. Gjernes, L. I. Helgesen, Y. Maree, "Health and environmental impact of amine based post combustion $CO_2$ capture", Energy Procedia, Vol. 37, 2013, p. 735. https://doi.org/10.1016/j.egypro.2013.05.162
  20. L. D. Polderman, C. P. Dillon, A. B. Steel, "Why monoethanolamine solution breaks down in gas-treating service", Oil & Gas Journal, Vol. 54, 1955, p. 180.
  21. A. F. Ciftja, A. Hartono, H. F. Svendsen, " $^{13}C$ NMR as a method species determination in $CO_2$ absorbent systems", International Journal of Greenhouse Gas Control, Vol. 16, 2013, p. 224. https://doi.org/10.1016/j.ijggc.2013.04.006