• Title/Summary/Keyword: Caputo fractional derivatives

Search Result 19, Processing Time 0.024 seconds

k-FRACTIONAL INTEGRAL INEQUALITIES FOR (h - m)-CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES

  • Mishra, Lakshmi Narayan;Ain, Qurat Ul;Farid, Ghulam;Rehman, Atiq Ur
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.357-374
    • /
    • 2019
  • In this paper, first we obtain some inequalities of Hadamard type for (h - m)-convex functions via Caputo k-fractional derivatives. Secondly, two integral identities including the (n + 1) and (n+ 2) order derivatives of a given function via Caputo k-fractional derivatives have been established. Using these identities estimations of Hadamard type integral inequalities for the Caputo k-fractional derivatives have been proved.

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

REFINEMENTS OF FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR LIOUVILLE-CAPUTO FRACTIONAL DERIVATIVES

  • GHULAM FARID;LAXMI RATHOUR;SIDRA BIBI;MUHAMMAD SAEED AKRAM;LAKSHMI NARAYAN MISHRA;VISHNU NARAYAN MISHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.95-108
    • /
    • 2023
  • The Hadamard type inequalities for fractional integral operators of convex functions are studied at very large scale. This paper provides the Hadamard type inequalities for refined (α,h-m)-convex functions by utilizing Liouville-Caputo fractional (L-CF) derivatives. These inequalities give refinements of already existing (L-CF) inequalities of Hadamard type for many well known classes of functions provided the function h is bounded above by ${\frac{1}{\sqrt{2}}}$.

NUMERICAL SOLUTION OF ABEL'S GENERAL FUZZY LINEAR INTEGRAL EQUATIONS BY FRACTIONAL CALCULUS METHOD

  • Kumar, Himanshu
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.527-545
    • /
    • 2021
  • The aim of this article is to give a numerical method for solving Abel's general fuzzy linear integral equations with arbitrary kernel. The method is based on approximations of fractional integrals and Caputo derivatives. The convergence analysis for the proposed method is also given and the applicability of the proposed method is illustrated by solving some numerical examples. The results show the utility and the greater potential of the fractional calculus method to solve fuzzy integral equations.

FRACTIONAL VERSIONS OF HADAMARD INEQUALITIES FOR STRONGLY (s, m)-CONVEX FUNCTIONS VIA CAPUTO FRACTIONAL DERIVATIVES

  • Ghulam Farid;Sidra Bibi;Laxmi Rathour;Lakshmi Narayan Mishra;Vishnu Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.75-94
    • /
    • 2023
  • We aim in this article to establish variants of the Hadamard inequality for Caputo fractional derivatives. We present the Hadamard inequality for strongly (s, m)-convex functions which will provide refinements as well as generalizations of several such inequalities already exist in the literature. The error bounds of these inequalities are also given by applying some known identities. Moreover, various associated results are deduced.

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain;Saima Akram;Mohamed A. Khadimallah;Madeeha Tahir;Shabir Ahmad;Mohammed Alsaigh;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.611-623
    • /
    • 2023
  • This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

A GENERAL SOLUTION OF A SPACE-TIME FRACTIONAL ANOMALOUS DIFFUSION PROBLEM USING THE SERIES OF BILATERAL EIGEN-FUNCTIONS

  • Kumar, Hemant;Pathan, Mahmood Ahmad;Srivastava, Harish
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.173-185
    • /
    • 2014
  • In the present paper, we consider an anomalous diffusion problem in two dimensional space involving Caputo time and Riesz-Feller fractional derivatives and then solve it by using a series involving bilateral eigen-functions. Also, we obtain a numerical approximation formula of this problem and discuss some of its particular cases.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

A New Analytical Series Solution with Convergence for Nonlinear Fractional Lienard's Equations with Caputo Fractional Derivative

  • Khalouta, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.583-593
    • /
    • 2022
  • Lienard's equations are important nonlinear differential equations with application in many areas of applied mathematics. In the present article, a new approach known as the modified fractional Taylor series method (MFTSM) is proposed to solve the nonlinear fractional Lienard equations with Caputo fractional derivatives, and the convergence of this method is established. Numerical examples are given to verify our theoretical results and to illustrate the accuracy and effectiveness of the method. The results obtained show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve other types of nonlinear fractional differential equations that arise in modeling different physical problems.