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A GENERAL SOLUTION OF A SPACE-TIME FRACTIONAL

ANOMALOUS DIFFUSION PROBLEM USING THE SERIES

OF BILATERAL EIGEN-FUNCTIONS

Hemant Kumar, Mahmood Ahmad Pathan, and Harish Srivastava

Abstract. In the present paper, we consider an anomalous diffusion
problem in two dimensional space involving Caputo time and Riesz-Feller

fractional derivatives and then solve it by using a series involving bilateral

eigen-functions. Also, we obtain a numerical approximation formula of
this problem and discuss some of its particular cases.

1. Introduction

By a set of axiom, definitions and methods of fractional calculus many pro-
cesses in the nature are modelled (see Kilbas et al. [8], Miller and Ross [12],
Samko et al. [15] and Podlubny [14]). One of these processes is an anomalous
diffusion which is a phenomenon that occurs in complex and non-homogeneous
mediums.

The anomalous diffusion may be based on generalized diffusion equation
which contains fractional order space and/or time derivatives (see Mainardi et
al. [9]). Metzler and Klafter [11] and Turski et al. [18] presented the occurrence
of the anomalous diffusion from the physical point of view and also explained
the effects of fractional derivatives in space and/or time to diffusion propaga-
tion. Agrawal [1, 2] applied an analytical technique by using eigen-functions
for a fractional diffusion-wave system.

Mathai, Saxena and Haubold [7, 10] investigated the solution of a unified
fractional reaction diffusion equation associated with Caputo derivative as the
time-derivative and Riesz-Feller fractional derivative (see Ciesielski et al. [3])
as the space-derivative. They have derived its solution by the application of
the Laplace and Fourier transforms in a compact and closed form in terms of
the H -function.
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Riesz introduced the pseudo-differential operator xI
α
0 whose symbol is |k|−α ,

well defined for any positive α with the exclusion of odd integer numbers, then
was called Riesz Potential. The Riesz fractional derivative xD

α
0 = −xIα0 is

defined by

xD
α
0 =


−|k|α,(1.1a)

−(k2)α/2,(1.1b)

−
(
− d2

dx2

)α/2
.(1.1c)

In addition, Feller [4] generalized the Riesz fractional derivative to include
the skewness parameter θ of the strictly stable densities. Feller showed that
the pseudo-differential operator Dα

θ is an inverse to the Feller potential, which
is a linear combination of two Riemann-Liouville (or Weyl) integrals:

(1.2) xI
α
+f (x) =

1

Γ (α)

∫ x

−∞
(x− ξ)α−1 f (ξ) dξ

and

(1.3) xI
α
−f (x) =

1

Γ (α)

∫ +∞

x

(ξ − x)
α−1

f (ξ) dξ,

where α > 0. By these definitions given in (1.2) and (1.3), the Feller potential
can be defined as

(1.4) xI
α
θ f (x) = c+ (α, θ) xI

α
+f (x) + c− (α, θ) xI

α
−f (x) ,

where the real parameters α and θ are always restricted as follows 0 < α ≤ 2,
α 6= 1, |θ| ≤ min {α, 2− α}, and also the coefficients

(1.5) c+ (α, θ) =
sin
(

(α−θ)π
2

)
sin (απ)

, c− (α, θ) =
sin
(

(α+θ)π
2

)
sin(απ)

.

Using the Feller potential given in (1.4) along with (1.5), Gorenflo and Mainardi
[5, 6] defined the Riesz-Feller derivative

(1.6)
∂αf (x)

∂ |x|αθ
= −xI−αθ f (x) = −

[
c+ (α, θ) xD

α
+f (x) + c− (α, θ) xD

α
−f (x)

]
,

where xD
α
± are Weyl fractional derivatives defined as

xD
α
±f (x) =


± d

dx

[
xI

1−α
± f (x)

]
, 0 < α < 1,(1.7a)

d2

dx2
[
xI

2−α
± f (x)

]
, 1 < α ≤ 2.(1.7b)

The Caputo fractional derivative is defined as

(1.8)
∂βu (t)

∂tβ
=

1

Γ (n− β)

∫ t

0

(t− q)n−β−1
(
d

dq

)n
u (q) dq,
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provided that 0 < β ≤ n, n ∈ N (the set of natural numbers) (see Mainardi et
al. [9]).

Motivated by above work, we consider the space-time fractional anomalous
diffusion problem

∂βu (x, y, t)

∂tβ
=
∂αu (x, y, t)

∂ |x|αθ1
+
∂µu (x, y, t)

∂ |y|µθ2
,(1.9a)

u (x, y, 0) = u0 (x, y) ,(1.9b)

and

lim
x,y→±∞

u (x, y, t) = 0,(1.9c)

where x, y ∈ R (the set of real numbers); β, α, µ are real parameters re-
stricted as 0 < β ≤ 1, 0 < α ≤ 1, 1 < µ ≤ 2; the skewness parameters
θ1 (θ1 ≤ min {α, 1− α}) and θ2 (θ2 ≤ min {µ, 2− µ}) of the asymmetry of the
probability distribution of a real-valued random variable among the x and y
co-ordinate axes.

We assume that the solution of above problem (1.9a, b, c) is the series
involving bilateral eigen-functions

(1.10) u (x, y, t) =

∞∑
n=1

un (t)ψn (x)φn (y)

particularly, setting un(t) = γnt
n, {γn}∞n=1 are independent of x, y and t,

the sets of functions {ψn(x)}∞n=1 and {φn(x)}∞n=1 are different, then u(x, y, t)
becomes a bilateral generating function (see Srivastava and Manocha [16, p. 79]
and Srivastava and Panda [17]).

The eigen-functions ψn (x) satisfy the eigen-value problem:

(1.11a)
d

dx
ψn (x) = iλnψn (x) ,

where

(1.11b) i =
√

(−1) and λn ∈ R, n ∈ N.

The eigen-functions φn (y) satisfy the eigen-value problem:

(1.12a)
d2

dy2
φn (y) = −λ′n2φn (y) ,

where

(1.12b) λ
′

n ∈ R, n ∈ N.

Before going to obtain the solution of above problem (1.9a, b, c), we present
following theorems:
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Theorem A. If the eigen-functions ψn (x) (n ∈ N, x ∈ R) satisfy the eigen-
value problem (1.11a), (1.11b) and ψn satisfies ψn (x+ (−r)) = ψn (x) .ψn (−r) ,
then, for 0 < α < 1 and θ1 ≤ min {α, 1− α}, we have

(1.13)
∂xψn (x)

∂ |x|αθ1
= −c1 (λn, α, θ1)ψn (x) ,

where

(1.14) c1 (λn, α, θ1) = iλn [c+ (α, θ1)An (α)− c− (α, θ1)A′n (α)] ,

(1.15) An (α) =
1

Γ (1− α)

∫ ∞
0

r−αψn (−r) dr

and

(1.16) A′n (α) =
1

Γ (1− α)

∫ ∞
0

(r)
−α

ψn (r) dr.

Also c+ (α, θ1) and c− (α, θ1) are found by (1.5).

Proof. Put f (x) = ψn (x), θ = θ1 in (1.6) and then use the (1.2), (1.3) and
(1.7a) in it, we get

∂αψn (x)

∂ |x|αθ1
=−

[
c+ (α, θ1)

∂

∂x

{
1

Γ (1− α)

∫ ∞
0

ψn (x+ (−r))
(r)

α dr

}
(1.17)

− c− (α, θ1)
∂

∂x

{
1

Γ (1− α)

∫ ∞
0

ψn (x+ r)

(r)
α dr

}]
.

Now making an appeal to Theorem A in the integrands of the right-hand
side of (1.17) with (1.11a), (1.11b), (1.14), (1.15) and (1.16), we find (1.13). �

Theorem B. If the eigen-functions φn (y), n ∈ N, y ∈ R satisfy the eigen-
value problem (1.12a), (1.12b) and the operator φ is defined by the function
φn : R→ R such that

(1.18) φn (y) = φ (ny) , n ∈ N, y ∈ R.

Another operator Φ is defined by the function Φn : R→ R such that

(1.19) Φn (y) = Φ (ny) , n ∈ N, y ∈ R.

Also assume that the relation between φn (y) and Φn (y) are given by

(1.20) φn (θn − y) = Φn (y) and Φn (θn − y) = φn (y) .

The addition formula for above operators is given by

(1.21) φn(y + (−r)) = φn(y)φn(θn − (−r)) + φn(θn − y)φn(−r)

then, for 1 ≤ µ < 2 and θ2 ≤ min {µ, 2− µ}, there exists

(1.22)
∂µφn(y)

∂|y|µθ2
= −c2(λ′n, µ, θ2, θn)φn(y)− c3(λ′n, µ, θ2)φn(θn − y),
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where

(1.23) c2(λ′n, µ, θ2, θn) = −(λ′n)2[c+(µ, θ2)B1(µ, θn) + c−(µ, θ2)B3(µ, θ2)]

and

(1.24) c3(λ′n, µ, θ2) = −(λ′n)2[c+(µ, θ2)B2(µ) + c−(µ, θ2)B4(µ)]

and here

(1.25) B1 (µ, θn) =
1

Γ (2− µ)

∫ ∞
0

φn (θn + η)

(η)
µ−1 dη,

(1.26) B2 (µ) =
1

Γ (2− µ)

∫ ∞
0

φn (−η)

(η)
µ−1 dη,

(1.27) B3 (µ, θn) =
1

Γ (2− µ)

∫ ∞
0

φn (θn − η)

(η)
µ−1 dη,

(1.28) B4 (µ) =
1

Γ (2− µ)

∫ ∞
0

φn (η)

(η)
µ−1 dη.

Proof. Put x = y, α = µ ( 1 < µ ≤ 2 ), θ = θ2 (θ2 ≤ min {µ, 2− µ}) and
f (y) = φn (y) in (1.6) and use the (1.2), (1.3) and (1.7b) in it, we get

(1.29)
∂µφn (y)

∂ |y|µθ2
= −

[
c+ (µ, θ2)

∂2

∂y2

{
1

Γ (2− µ)

∫ ∞
0

φn (y + (−η))

(η)
µ−1 dη

}

+ c− (µ, θ2)
∂2

∂y2

{
1

Γ (2− µ)

∫ ∞
0

φn (y + η)

(η)
µ−1 dη

}]
.

Now making an appeal to the addition formula (1.21) in integrands of the
right-hand side of (1.29) and the eigen-value problem (1.12a) and (1.12b) in it,
we get

(1.30)
∂µφn(y)

∂|y|µθ2
= (λ′n)2[c+(µ, θ2)B1(µ, θn) + c−(µ, θ2)B3(µ, θn)]φn(y)

+ c+(µ, θ2)B2(µ) + c−(µ, θ2)B4 (µ)}φn(θn − y).

Finally, making an appeal to the (1.23), (1.28) in (1.30), we get relation
(1.22).

Note. Partcularly, put φn = sinn, Φn = cosn and θn = π
2n in (1.20), and with

help of the definitions given in (1.18) and (1.19), we get following trigonometri-
cal relations sin

(
π
2 − ny

)
= cosny and cos

(
π
2 − ny

)
= sinny and the addition

formulae are

sin (ny − nr) = sinny cosnr − cosny sinnr;

cos (ny − nr) = cosny cosnr + sinny sinnr. �
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2. Solution of anomalous diffusion problem

In this section, we obtain the solution of the space-time fractional anomalous
diffusion problem given in the (1.9a, b, c).

We make an appeal to (1.9a), (1.10), (1.13) and (1.22), to get

(2.1)
∂βun (t)

∂tβ
φn (y) + un (t) c1 (λn, α, θ1)φn (y) + un (t) c2 (λ′n, µ, θ2, θn)

φn (y) + un (t) c3 (λ′n, µ, θ2)φn (θn − y) = 0.

Dividing by un (t)φn (y) in (2.1), we get

1

un (t)

∂βun (t)

∂tβ
(2.2)

= −
[
c1 (λn, α, θ1) + c2 (λ′n, µ, θ2) + c3 (λ′n, µ, θ2)

φn (θn − y)

φn (y)

]
= − ξn (any constant).

Therefore, from the (2.2), we get

(2.3)
∂βun (t)

∂tβ
= −ξnun (t) , 0 < β < 1, n ∈ N,

and
(2.4)
c1(λn, α, θ1)φn(y)+c2(λ′n, µ, θ2, θn)φn(y)+c3(λ′n, µ, θ2)φn(θn−y)−ξnφn(y) = 0.

Now multiplying by φn(y)[∫ b′
a′ |φn(y)|

2dy
]1/2 in (2.4) and then integrating the re-

sulting identity with respect to y from a′ to b′, we get

(2.5)
c1 (λn, α, θ1)

∫ b′

a′
φn (y)φn (y)dy[∫ b′

a′
|φn (y)|2 dy

]1/2 +
c2 (λ′n, µ, θ2, θn)

∫ b′

a′
φn (y)φn (y)dy[∫ b′

a′
|φn (y)|2 dy

]1/2
+
c3 (λ′n, µ, θ2)

∫ b′
a′
φn (θn − y)φn (y)dy[∫ b′

a′
|φn (y)|2 dy

]1/2 −
ξn
∫ b′
a′
φn (y)φn (y)[∫ b′

a′
|φn (y)|2 dy

]1/2 = 0.

Then, on applying the orthogonal property of eigen-functions in (2.5), we
get

(2.6) ξn = [c1(λn, α, θ1) + c2(λ′n, µ, θ2, θn)].

Taking Laplace transform of (2.3), we get (see Kilbas et al. [8])

(2.7) sβun (s)− sβ−1un (0) + ξnun (s) = 0.

The (2.7) gives us

(2.8) un (s) =
un (0) sβ−1

sβ + ξn
.
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The inverse Laplace transform of (2.8) is found by

(2.9) un (t) = un (0) Eβ, 1
(
−ξntβ

)
(see also Kilbas et al. [8], Mathai, Saxena and Haubold [10]), where ξn is given
in (2.6) and Eβ, 1(·) is well known Mittag-Leffler function (see Srivastava and
Manocha [16]).

Now to find out the value of un (0) , we take the value of (1.10) at t = 0,
and make an appeal to (1.9b) to get

(2.10) u0(x, y) =

∞∑
n=1

un(0)ψn(x)φn(y).

Then, multiply both the side of (2.10) by

ψm (x)[∫ b
a
|ψm (x)|2 dx

]1/2 φm (y)[∫ b′
a′
|φm (y)|2 dy

]1/2
and integrate it with respect to x from a to b and then that with respect to y
from a′ to b′, to get∫ b

a

∫ b′
a′
u0 (x, y)ψm (x) φm (y)dxdy[∫ b

a
|ψm (x)|2 dx

]1/2 [∫ b′
a′
|φm (y)|2 dy

]1/2(2.11)

=

∞∑
n=0

un (0)

∫ b
a
ψn (x)ψm (x) dx

∫ b′
a′
φn (x)φm (y)dy[∫ b

a
|ψm (x)|2 dx

]1/2 [∫ b′
a′
|φm (y)|2 dy

]1/2 .
Now in (2.11) making an appeal to the orthogonal property of eigen-func-

tions, we get
(2.12)

un (0) =
1[∫ b

a
|ψn (x)|2 dx

] [∫ b′
a′
|φn (y)|2 dy

] ∫ b

a

∫ b′

a′
u0 (x, y)ψn (x) φn (y)dxdy.

Therefore, with the aid of (2.9) and (2.12), we get a sequence of integrals,
n ∈ N

un (t)=

 1[∫ b
a
|ψn (x)|2 dx

] [∫ b′
a′
|φn (y)|2 dy

] ∫ b

a

∫ b′

a′
u0 (x, y)ψn (x)φn (y)dxdy


(2.13)

× Eβ,1
(
−ξntβ

)
,

where ξn is given in the (2.6).
Thus, the solution of that anomalous diffusion equation is given by

u (x, y, t) =

∞∑
n=1

un (t)ψn (x)φn (y) ,
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where un (t) is given in (2.13).

3. Numerical approximation formula

In this section, we obtain the numerical solution of the problem on applying
Grünwald-Letnikov approximation for Caputo derivative.

The Riemann-Liouville derivative aD
β
t and Caputo derivative C

aD
β
t ≡ ∂

β

∂tβ

are related by (see Özdemir et al. [13])

(3.1) aD
β
t u (t) = C

aD
β
t u (t) +

m−1∑
r=0

dr

dtr
u (t) |

t=a

(t− a)
r−β

Γ (r − β + 1)
,

where m ∈ N, m− 1 < β ≤ m, a ∈ R .
Note that, under the assumption | lim

a→−∞
dr

dtr u (t) |
t=a

<∞ for r = 0, 1, 2, . . .,

m− 1, we have

(3.2) −∞D
β
t u (t) = C

−∞D
β
t u (t) .

Since in our problem 0 < β < 1 and a = 0, therefore (3.1) gives us

(3.3) C
0 D

β
t u (t) = 0D

β
t u (t)− u (0)

t−β

Γ (1− β)
.

Thus in (3.3), use Grünwald-Letnikov formula (see Özdemir et al. [13])

0D
β
t un(t) ≈ 1

hβ

M∑
r=0

w(β)
r un(hM − rh),M =

t

h
, h is step size,

we get approximation of Caputo derivative for un(t) in the form

(3.4) C
0 D

β
t un (t) ≈ 1

hβ

M∑
r=0

w(β)
r un (hM − rh)− un (0)

(hM)
−β

Γ (1− β)
,

where M = t
h represents the number of sub-time intervals, h is step size and

w
(β)
r are the coefficients of Günwald-Letnikov formula

(
w

(β)
r = (−1)

r
( cβr )

)
,

particularly,

(3.5) w
(β)
0 = 1, w(β)

r =

(
1− β + 1

r

)
w

(β)
r−1.

Now making an appeal to (2.3) and (3.4), we get

(3.6) un(t) =
1(

hβξn − w(β)
0

) [ M∑
r=1

w(β)
r un (hM − rh)− un (0)

(M)
−β

Γ (1− β)

]
,

where ξn is given in (2.6), w
(β)
0 and w

(β)
r are given in (3.5).
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Then, making an appeal to (1.10) and (3.6), we get the numerical approxi-
mation formula of anomalous diffusion (1.9a, b, c) in the form

u(x, y, t) =

∞∑
n=1

1(
hβξn − w(β)

0

) [ M∑
r=1

w(β)
r un (hM − rh)− un (0)

(M)
−β

Γ (1− β)

](3.7)

× ψn (x)φn (y) .

4. Particular cases

Set ψn(x) = einx in Theorem A and φn(y) = sinny, θn = π
2n in Theorem

B, then from Theorem A we get

An(α) = (in)
α−1

, A′n(α) = (−in)
α−1

and λn = n.

Therefore, we have

c1(n, α, θ1) = [(in)
α
c+(α, θ1) + (in)

α
c−(α, θ1)] ,(4.1)

0 < α < 1, θ1 ≤ min {α, 1− α} .

Again, from Theorem B we find λ
′

n = n,

(4.2) B1

(
µ,

π

2n

)
= (n)

µ−2
cos

π

2
(2− µ) ,

(4.3) B2 (µ) = (−n)
µ−2

sin
π

2
(2− µ) ,

(4.4) B3

(
µ,

π

2n

)
= (−n)

µ−2
cos

π

2
(2− µ) ,

(4.5) B4 (µ) = (n)
µ−2

sin
π

2
(2− µ) .

Therefore,

(4.6) c2

(
n, µ, θ2,

π

2n

)
=− (n)

µ
cos

π

2
(2− µ)

[
c+ (µ, θ2) + (−1)

µ−2
c− (µ, θ2)

]
and

(4.7) c3 (n, µ, θ2) = − (−n)
µ

sin
π

2
(2− µ)

[
(−1)

µ−2
c+ (µ, θ2)− c− (µ, θ2)

]
,

1 < µ ≤ 2, θ2 ≤ min {µ, 2− µ} .
Again, on using (2.6), (4.1), (4.6) and (4.7), we get

(4.8) ξn = [(in)
α {c+ (α, θ1) + c− (α, θ1)} − (n)

µ

× cos
π

2
(2− µ)

{
c+ (µ, θ2) + (−1)

µ−2
c− (µ, θ2)

}]
.
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Now set u0 (x, y) = (sinx)
v

sinny, such that Re(v) > −1, 0 ≤ x ≤ π, 0 ≤
y ≤ π, in (2.13), we get

(4.9) un (t) =
e
−inπ

2 Γ (ν + 1)

2vΓ
(
1 + ν−n

2

)
Γ
(
1 + ν+n

2

)Eβ,1 (−ξntβ) .
Hence, the particular solution of the problem (1.9a, b, c) is found by

(4.10) u (x, y, t) =

∞∑
n=1

ein(x−π2 ) Γ (ν + 1)

2vΓ
(
1 + ν−n

2

)
Γ
(
1 + ν+n

2

) sinnyEβ,1
(
−ξntβ

)
.

Also, using above particular cases given of (4.1) in (3.7), we get the approx-
imation solution of problem (1.9a, b, c) in the form

u(x, y, t) =

∞∑
n=1

1(
hβξn − w(β)

0

) [ M∑
r=1

w(β)
r un (hM − rh)− un (0)

(M)
−β

Γ (1− β)

](4.11)

× einx sinny.

Example 1. α = 0.5, µ = 1.5, β = 0.6, 0 ≤ x ≤ π, 0 ≤ y ≤ π, t = 5,
ν = 1.5 then θ1 = 0.5 and θ2 = 0.5; c+ (0.5, 0.5) = 0 and c− (0.5, 0.5) = 1;
c+ (1.5, 0.5) = 1 and c− (1.5, 0.5) = 0;

(4.12) |ξn| =

√
n (n− 1)

2
+ n

2
.

From (4.10) the real value of u (x, y, t) for |ξn| is given by

(4.13) Reu (x, y, t) =

∞∑
n=1

cosn
(
x− π

2

)
Γ (ν + 1)

2vΓ
(
1 + ν−n

2

)
Γ
(
1 + ν+n

2

) sinnyEβ,1
(
− |ξn| tβ

)
.

For all values given in (4.12) and the formula (4.13) ,we plot following graph
of Re u(x, y, t) with the help of Wolfram Mathematica 7, like Egg-Tray (see
Figure 1).

The real value of u(x, y, t) from approximation formula given in (4.11) is
found by

Re u(x, y, t) =

∞∑
n=1

1(
hβξn − w(β)

0

) [ M∑
r=1

w(β)
r un (hM − rh)− un (0)

(M)
−β

Γ (1− β)

](4.14)

× cosnx sinny.

For all values of Eqn. (4.12), u10(0) = u10 = −0.00193417, at t = 0 and with
the help of formula (4.14) and for β = 1 (standard diffusion) we note that all

coefficients w
(β)
r (r > 1) vanishing except w

(1)
1 (w

(1)
1 = −1).

We plot following graph of Re u(x, y, t) like Egg-Tray (see Figure 2).
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Figure 1. For n = 1 to 10, 0 ≤ x ≤ π, 0 ≤ y ≤ π and t = 1 to 5

Figure 2. For n = 1 to 10, 0 ≤ x ≤ π, 0 ≤ y ≤ π and t = 1 to 5

Concluding remarks. Both Figures 1 and 2 seems same and like Egg-Tray, for
same values of x, y, t and n. By our formula we get larger values of Reu(x, y, t)
than due to numerical approximation formula (4.14).
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