• Title/Summary/Keyword: Capping layer

Search Result 137, Processing Time 0.031 seconds

The formation of thermally stable Nickle Germanide with Ti capping layer (Ti capping layer를 이용한 열적으로 안정한 NiGe 형성에 관한 연구)

  • Mun, N.J.;Choi, C.J.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.138-138
    • /
    • 2008
  • Ti capping layer를 이용하여 NiGe의 열적 안정성을 향상시키는 연구를 수행하였다. N-type Ge(100) 기판에 30nm 두께의 Ni과 30nm 두께의 Ti capping layer를 E-beam evaporator를 이용하여 증착하고 $300^{\circ}C$에서 $700^{\circ}C$ 까지 30초간 $N_2$ 분위기에서 급속 열처리하여 Ni-Germanide를 형성하였다. XRD의 결과로부터 Ti capping layer 유무에 상관없이, 전 온도 범위에 걸쳐 NiGe 상이 형성된 것을 관찰할 수 있었다. 급속 열처리 온도에 따른 면저항 값을 측정한 경우, $300^{\circ}C$에서 $600^{\circ}C$까지의 열처리 온도 범위에서는 모든 시편들이 비슷한 면저항 값을 보인 반면, 열처리 온도가 $700^{\circ}C$ 이상에서는 Ti capping layer가 있는 시편이 Ti capping layer가 없는 시편보다 낮은 면저항 값을 갖는 것을 확인할 수 있었다. 이는 고온 열처리 시 Ti capping layer에 있는 Ti가 기판 방향으로 확산하여 NiGe grain boundary에 segregation 되고 그로 인하여 NiGe의 grain boundary 움직임을 억제하여 agglomeration 현상을 효과적으로 방지하였기 때문에 나타난 현상으로 사료된다.

  • PDF

Interdiffusion in Cu/Capping Layer/NiSi Contacts (Cu/Capping Layer/NiSi 접촉의 상호확산)

  • You, Jung-Joo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.463-468
    • /
    • 2007
  • The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers (Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구)

  • ;;;;;;;Kazuyuki Fujihara
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 2000
  • We investigated the role of the capping layers in the formation of the cobalt silicide in Co/Si systems with TiN and Ti capping layers and without capping layers. The Co/Si interfacial reactions and the phase transformations by the rapid thermal annealing (RTA) processes were observed by sheet resistance measurements, XRD, SIMS and TEM analyses for the clean silicon substrate as well as for the chemically oxidized silicon substrate by $H_2SO_4$. We observed the retardation of the cobalt disilicide formation in the Co/Si system with Ti capping layers. In the case of Co/$SiO_2$/Si system, cobalt silicide was formed by the Co/Si reaction due to with the dissociation of the oxide layer by the Ti capping layers.

  • PDF

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Study on YBCO coated conductor characteristics dependent on deposition method of $CeO_2$ capping layer ($CeO_2$ capping layer의 증착 방법에 따른 YBCO coated conductor 특성 연구)

  • Yang, Joo-Saeng;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Park, Yu-Mi;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Chan;Jo, Wiliiam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.268-269
    • /
    • 2005
  • YBCO 박막형 초전도체(coated conductor) 제조를 위해서는 여러 층의 완충층이 필요하다. 현재 일반적인 완충층의 구조는 seed layer로써 $Y_2O_3$, diffusion barrier로 YSZ, capping layer로 $CeO_2$가 사용되고 있다. 특히, capping layer로 $CeO_2$는 YBCO와 lattice mismatch가 매우 우수한 산화물로 이용되고 있다 본 연구에서는 $CeO_2$ capping layer가 증착 방법에 따라 그 위에 증착되어지는 초전도층의 특성에 어떤 영향을 미치는지 연구하였다. $CeO_2$를 thermal evaporation과 PLD (pulsed laser deposition) 증착 방법으로 증착 한 후 그 위에 PLD 방법으로 YBCO를 증착하여 coated conductor의 성능을 평가하였다.

  • PDF

The Formation and Characteristics of Titanium Germanide with Cr capping layer on n-Ge(100) Substrate (Cr capping layer를 이용한 n-Ge(100) 기판에서의 Ti germanide 형성과 특성에 관한 연구)

  • Mun, N.J.;Choi, C.J.;Shim, K.H.;Park, D.S.;Yang, H.Y.;Jeong, M.R.;Yoon, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.154-154
    • /
    • 2009
  • Cr capping layer를 이용하여 Titanium germanide의 열적 안정성을 향상시키는 연구를 수행하였다. n-type Ge(100) 기판 위에 전자빔 증착기를 이용하여 30nm 두께의 Ti와 Cr capping layer를 증착하고 $400\;^{\circ}C$에서 $800\;^{\circ}C$까지 30초간 N2 분위기로 급속 열처리하여 Ti germanide를 형성하였다. XRD결과로부터 Cr capping layer의 유무에 관계 없이 Ti germanide가 형성된 것을 관찰할 수 있었다. Ge 기판 위에 CTLM 패턴을 형성하고 실험을 진행하여 Ti germanide의 I-V 측정 데이터를 통해 Ohmic 특성을 알아보았고, contact resistance, sheet resistance, specific contact resistance를 구하였다.

  • PDF

Effects of dielectric capping layer in the phosphorescent top emitting organic light emitting diodes

  • Kim, Sei-Yong;Leem, Dong-Seok;Lee, Jae-Hyun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.499-502
    • /
    • 2008
  • Effects of a dielectric capping layer on the luminous characteristics of top emitting organic light emitting diodes (TOLEDs) have been analyzed using a classical electromagnetic theory. Special attention was given to the influence of the cavity length on the effectiveness of the capping layer. The luminance characteristics of the TOLEDs influenced by the combined effects of the cavity length and the capping layer thickness. Furthermore, these combined effects also modify the emission spectrum and pattern of the TOLEDs, which result in the improvement of total luminance of the device, but no significant change in the device out-coupling efficiency.

  • PDF

Technology of Ni Silicide for sub-100nm CMOS Device (100nm 이하의 CMOS소자를 위한 Ni Silicide Technology)

  • 이헌진;지희환;배미숙;안순의;박성형;이기민;이주형;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.237-240
    • /
    • 2002
  • In this W, a NiSi technology suitable for sub-100nm CMOS sevice is proposed. It seems that capping layer has little effect on the sheet resistance and junction leakage current when there is no thermal treatment. However, there happened agglomeration and drastic increase of Junction leakage current without capping layer. In other word, capping layer especially TiN capping layer is highly effective in suppressing thermal effect. It is shown that the sheet resistance of 0.12${\mu}{\textrm}{m}$ linewidth and shallow p+/n junction with NiSi were stable up to 700 t /30 minute thermal treatment.

  • PDF