• Title/Summary/Keyword: Capacitive-coupled electrode

Search Result 15, Processing Time 0.028 seconds

Study of the Wearable Electrocardiogram Measuring System using Capacitive-coupled Electrode (정전 용량성 결합 전극을 이용한 웨어러블 심전도 측정 시스템 설계에 관한 연구)

  • Lee, Jae-Ho;Lee, Young-Jae;Lee, Kang-Hwi;Kang, Seng-Jin;Kim, Kyeung-Nam;Park, Hee-Jung;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1448-1454
    • /
    • 2014
  • In this study, a new type of electrode device is implemented to measure the capacitance energy and interpret it as the ECG (Electrocardiogram) data. The main idea of this new electrode system is to estimate the capacitance on the skin by assembling a capacitive-coupled circuits and translate into the ECG signal. To measure the coupling energy and estimate the aquired data in terms of heart activity, the capacitive-coupled electrode is garmented with fabrics in the form of a chest band or a vest jacket. To compare the ECG data from the capacitive-coupled electrode with the conventional electrode(Ag-AgCl) system, the corelation coefficient between two signals is computed as 0.9517. Thus, we can conclude the fact that capacitive-coupled electrode system can measure a person's heart activity without any contact to his or her skin and can the interpreted as the ECG data.

Adhesive Polyurethane-based Capacitive Electrode for Patch-type Wearable Electrocardiogram Measurement System (패치형 웨어러블 심전도 측정 시스템을 위한 접착성 폴리우레탄 기반의 용량성 전극)

  • Lee, Jeong Su;Lee, Won Kyu;Lim, Yong Gyu;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.203-210
    • /
    • 2014
  • Wearable medical device has been a resurgence of interest thanks to the development of technology and propagation of smart phone in recent years. Various types of wearable devices have been introduced and available in market. Capacitive coupled electrode which measures electrocardiogram over cloth is able to be applied wearable device. In previous approaches of capacitive electrode, they need proper pressure for stable contact of the electrode to body surface. However, wearable device that gives pressure on body surface is not suitable for long-term monitoring. In this study, we proposed adhesive polyurethane-based capacitive electrode for patch-type wearable electrocardiogram (ECG) monitoring device. Self-adhesive polyurethane make the electrode and whole system be adhered to the surface of skin without any pressure. The patch-type system is consisted of analog filter, analog-to-digital converter and wireless transmission module and designed to be attached on the body as a patch. To validate the feasibility of the developed system, we measured ECG signal in stable and active state and extracted heart rate. Therefore, we observed skin response after long-term attachment for biocompatibility of the adhesive polyurethane and adhesive strength of it. The result shows the possibility of applying the developed system for ECG monitoring in real-life.

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

Brightness Property of ICCP(Inductive Capacitive Coupled Plasma) for External Electrode Fluorescent Lamp (EEFL) (외부전극 형광램프를 위한 유도-용량형 플라즈마의 휘도특성)

  • Lee, Seong-Jin;Choi, Gi-Seung;Chai, Su-Gil;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1657-1658
    • /
    • 2006
  • An external electrode fluorescent lamps (EEFLs) have the advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Studies on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter. To solve these problems of CCFL, EEFL (External Electrode Fluorescent Lamp) is introduced. Because electrode of EEFL is on the outer surface of discharge tube, the electrode is perfectly prevented from the sputtering by accelerated ions. And it is possible to drive the many CCFLs at the same time, because EEFL shows the positively resistant characteristic. But EEFL has the large non-radiative power loss in sheath. In this study the novel electrode structure was introduced in order to reduce non-radiative power loss in sheath of EEFL. The novel electrode structure comes from the idea to combine conceptually capacitive discharge with inductive discharge. Thus, this study verifies the change in the optical characteristics according to the change in electrode structure through a Maxwell's electromagnetic field simulation and examines the relationship between the change in the EEFL electrode structure and brightness by measuring the optical characteristics.

  • PDF

Simulation and Measurement of Characteristic in 450 mm CCP Plasma Source

  • Park, Gi-Jeong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.508-508
    • /
    • 2012
  • CST microwave studio is used to simulate the plasma profile of the 450mm CCP source. Standing wave effect becomes important at the high frequency as the electrode radius increases. To solve plasma non-uniformity problem, we designed multi electrode chamber to decreasing standing wave effect. Simulation showed the ratio of input power of each electrode is related with electric field strength. The multi electrode was constructed and measured by 2D probe arrays using floating harmonic method. Uniformity of 450 mm CCP was changed by the ratio of input power of each electrode. We described this dependence with circuit model.

  • PDF

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • Yeom, Won-Gyun;Jeon, Min-Hwan;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF

A 0.9-V human body communication receiver using a dummy electrode and clock phase inversion scheme

  • Oh, Kwang-Il;Kim, Sung-Eun;Kang, Taewook;Kim, Hyuk;Lim, In-Gi;Park, Mi-Jeong;Lee, Jae-Jin;Park, Hyung-Il
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.859-874
    • /
    • 2022
  • This paper presents a low-power and lightweight human body communication (HBC) receiver with an embedded dummy electrode for improved signal acquisition. The clock data recovery (CDR) circuit in the receiver operates with a low supply voltage and utilizes a clock phase inversion scheme. The receiver is equipped with a main electrode and dummy electrode that strengthen the capacitive-coupled signal at the receiver frontend. The receiver CDR circuit exploits a clock inversion scheme to allow 0.9-V operation while achieving a shorter lock time than at 3.3-V operation. In experiments, a receiver chip fabricated using 130-nm complementary metal-oxide-semiconductor technology was demonstrated to successfully receive the transmitted signal when the transmitter and receiver are placed separately on each hand of the user while consuming only 4.98 mW at a 0.9-V supply voltage.

Development and Thermal Distribution of An RF Capacitive Heating Device (유전가열장치의 개발과 온열분포)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh, John-Kyu;Kim, Byung-Soo
    • Radiation Oncology Journal
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1987
  • Hypertermia for the treatment of cancer has been introduced for a long time and the biological effect for the use of hyperthermia to treat malignant tumors has been well established and encouraging clinical results have been obserbed. Unfortunately, however, the engineering or technical aspects of hyperthermia for the deep seated tumors has not been satisfactory. We developed the radiofrequency capactive hyperthermia device (Greenytherm-GY8) in cooperation with Yonsei Cancer Center and Green Cross Medical Corporation. It was composed with $8{\sim}10MHz$ RF generator, capacitive electrode, matching system, cooling system, temperature measuring system and control PC computer. The thermal profile was investigated in agar phantom, animals and in human tumors, heated with capactivie RF device. Deep and homogeneous heating could be achieved in a large phantom of 25cm diameter and 19cm thick when heated with a pair of 23cm diameter electrodes, coupled to both bases of the phantom, when the size of the two electrodes was not the same, the region near the smaller electrode was preferentially heated. It was, therefore, possible to control the depth of heating by choosing proper size of electrodes. Therapeutic temperature $(42^{\circ}C{\sim}43^{\circ}C)$ could be obtained in the living animal experiments. Indications are that deep heating of humn tumors might be achieved with the capacitive method, provided that subcutaenous fat layer is cooled by temperature controlled bolus and large size of electrodes.

  • PDF

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.