Browse > Article
http://dx.doi.org/10.4218/etrij.2022-0106

A 0.9-V human body communication receiver using a dummy electrode and clock phase inversion scheme  

Oh, Kwang-Il (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Kim, Sung-Eun (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Kang, Taewook (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Kim, Hyuk (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Lim, In-Gi (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Park, Mi-Jeong (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Lee, Jae-Jin (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Park, Hyung-Il (AI SoC Research Division, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.44, no.5, 2022 , pp. 859-874 More about this Journal
Abstract
This paper presents a low-power and lightweight human body communication (HBC) receiver with an embedded dummy electrode for improved signal acquisition. The clock data recovery (CDR) circuit in the receiver operates with a low supply voltage and utilizes a clock phase inversion scheme. The receiver is equipped with a main electrode and dummy electrode that strengthen the capacitive-coupled signal at the receiver frontend. The receiver CDR circuit exploits a clock inversion scheme to allow 0.9-V operation while achieving a shorter lock time than at 3.3-V operation. In experiments, a receiver chip fabricated using 130-nm complementary metal-oxide-semiconductor technology was demonstrated to successfully receive the transmitted signal when the transmitter and receiver are placed separately on each hand of the user while consuming only 4.98 mW at a 0.9-V supply voltage.
Keywords
baseband digital communication; clock data recovery (CDR); dummy electrode; human body communication (HBC); phase inversion; wearable device;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. A. Callejon, D. Naranjo-Hernandez, J. Reina-Tosina, and L. M. Roa, A comprehensive study into intrabody communication measurements, IEEE Trans. Instrum. Meas. 62 (2013), no. 9, 2446-2455.   DOI
2 M. D. Pereira, G. A. Alvarez-Botero, and F. R. de Sousa, Characterization and modeling of the capacitive HBC channel, IEEE Trans. Instrum. Meas. 64 (2015), no. 10, 2626-2635.   DOI
3 P. Mayer, R. Strebel, and M. Magno, ZeroPowerTouch: Zeropower smart receiver for touch communication and sensing in wearable applications, (Proc. of DATE, Grenoble, France), Mar. 2019, pp. 944-947.
4 T. G. Zimmerman, J. R. Smith, J. A. Paradiso, D. Allport, and N. Gershenfeld, Applying electric field sensing to human-computer-interfaces,(Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,Denver, CO, USA), May 1995, pp. 280-287.
5 K. Oh, T. W. Kang, S. E. Kim, H. I. Park, I. G. Lim, and S. W. Kang, Low-noise inducing Rx for human body communication, Electron. Lett. 52 (2016), no. 21, 1740-1742.   DOI
6 S.-J. Song, N. Cho, S. Kim, J. Yoo, S. Choi, and H. J. Yoo, A 0.9 V 2.6 mW body-coupled scalable PHY transceiver for body sensor applications, (IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, CA, USA), Feb. 2007, pp. 366-367.
7 H. Cho, H. Kim, M. Kim, J. Jang, Y. Lee, K. J. Lee, J. Bae, and H. J. Yoo, A 79 pJ/b 80 Mb/s full-duplex transceiver and a 42.5 μW 100 kb/s super-regenerative transceiver for Body Channel communication, IEEE J. Solid-State Circuits 51 (2016), no. 1, 310-317.   DOI
8 Y. Jeon, C. Jung, S. I. Cheon, H. Cho, J. H. Suh, H. Jeon, S. T. Koh, and M. Je, A 100Mb/s galvanically-coupled body-channelcommunication transceiver with 4.75 pJ/b TX and 26.8 pJ/b RX for bionic arms, (Proc. of Symp. VLSI Circuits, Kyoto, Japan), June 2019, pp. C292-C293.
9 J.-H. Hwang, T. W. Kang, Y. T. Kim, and S. O. Park, Measurement of transmission properties of HBC channel and its impulse response model, IEEE Trans. Instrum. Meas. 65 (2016), no. 1, 177-188.   DOI
10 T. Kang, S. Kim, K. I. Oh, J. H. Hwang, J. Lee, H. Park, K. Byun, and W. Lee, Evaluation of human body characteristics for electric signal transmission based on measured body impulse response, IEEE Trans. Instrum. Meas. 69 (2020), no. 9, 6399-6411.   DOI
11 T. Kang, J. H. Hwang, H. Kim, S. E. Kim, K. I. Oh, J. J. Lee, H. I. Park, S. E. Kim, W. Oh, and W. Lee, Measurement and evaluation of electric signal transmission through human body by channel modeling, system design, and implementation, IEEE Trans. Instrum. Meas. 70 (2021), 1-14.
12 J.-H. Lee, J. Ko, K. Kim, M. Choi, J. Y. Sim, H. J. Park, and B. Kim, A Body Channel communication technique utilizing decision feedback equalization, IEEE Access 8 (2020), 198468-198481.   DOI
13 V. Matko and R. Safaric, Major improvements of quartz crystal pulling sensitivity and linearity using series reactance, Sensors 9 (2009), no. 10, 8263-8270.   DOI
14 S. Maity, D. Das, B. Chatterjee, and S. Sen, Characterization and classification of human body channel as a function of excitation and termination modalities, (Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., (Honolulu, HI, USA), Jul. 2018, pp. 3754-3757.
15 T. Kang, K. I. Oh, J. H. Hwang, S. Kim, H. Park, and J. Lee, Measurement and analysis of electric signal transmission using human body as medium for WBAN applications, IEEE Trans. Instrum. Meas. 67 (2018), no. 3, 527-537.   DOI
16 T. Kang, K. I. Oh, H. Park, and S. Kang, Review of capacitive coupling human body communications based on digital transmission, ICT Exp. 2 (2016), no. 4, 180-187.   DOI
17 T. Lee, Y. H. Kim, J. Sim, J. S. Park, and L. S. Kim, A 5-Gb/s 2.67-mW/Gb/s digital clock and data recovery with hybrid dithering using a time-dithered delta-sigma modulator, IEEE Trans. Very Large Scale Integr. Syst. 24 (2016), no. 4, 1450-1459.   DOI
18 J. Lee, K. S. Kundert, and B. Razavi, Analysis and modeling of bang-bang clock and data recovery circuits, IEEE J. Solid-State Circuits 39 (2004), no. 9, 1571-1580.   DOI
19 F. M. Gardner, Phaselock techniques, 3rd ed., John Wiley & Sons, NY, USA, 2005.
20 J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits, 3rd ed., Prentice Hall Press, Hoboken, NJ, USA, 2008.
21 C. R. Hogge Jr., A self correcting clock recovery circuit, IEEE J. Lightwave Technol. 3 (1985), no. 6, 1312-1314.   DOI
22 Tektronix, Differential probes P6248.P6247.P6246 datasheet, 2016. Available from: https://www.tek.com/datasheet/differential-probes-2 [last accessed March 2022].
23 S. Maity, D. Das, X. Jiang, and S. Sen, Secure human-internet using dynamic human body communication, (Proc. of ISLPED, Taipei, Taiwan), July 2017, pp. 1-6.
24 M. Seyedi, B. Kibret, D. T. Lai, and M. Faulkner, A survey on intrabody communications for body area network applications, IEEE Trans. Biomed. Eng. 60 (2013), no. 8, 2067-2079.   DOI
25 H. Wang, X. Tang, C. S. Choy, and G. E. Sobelman, Cascaded network body channel model for intrabody communication, IEEE J. Biomed. Health Informat. 20 (2016), no. 4, 1044-1052.   DOI
26 S. Maity, M. He, M. Nath, D. Das, B. Chatterjee, and S. Sen, BioPhysical modeling, characterization and optimization of electroquasistatic human body communication, IEEE Trans. Biomed. Eng. 66 (2019), no. 6, 1791-1802.   DOI
27 A. Astrin, IEEE Computer Society, IEEE standard for local and metropolitan area networks: Part 15.6 wireless body area networks, IEEE Std. 802.15.6 2012.
28 E. Wen, D. Sievenpiper, and P. Mercier, Channel characterization of magnetic human body communication, IEEE Trans. Biomed. Eng. 69 (2022), no. 2, 569-579.   DOI
29 A. Tanaka, G. Chen, S. Ye, and K. Niitsu, A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS, (IEEE International Conference on Electronics, Circuits, and Systemas, Dubai, Uniteda Srab Emirates), Nov. 2021, pp. 1-5.
30 M. S. Wegmueller, A. Kuhn, J. Froehlich, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, An attempt to model the human body as a communication channel, IEEE Trans. Biomed. Eng. 54 (2007), no. 10, 1851-1857.   DOI
31 N. Cho, L. Yan, J. Bae, and H. J. Yoo, A 60 kb/s-10 Mb/s adaptive frequency hopping transceiver for interference-resilient body channel communication, IEEE J. Solid-State Circuits 44 (2009), no. 3, 708-717.   DOI
32 C. Hyoung, S. W. Kang, S. O. Park, and Y. T. Kim, Transceiver for human body communication using frequency selective digital transmission, ETRI J. 34 (2012), no. 2, 216-225.   DOI
33 T. -W. Kang, J. H. Hwang, S. E. Kim, K. I. Oh, H. I. Park, I. G. Lim, and S. W. Kang, Highly simplified and bandwidth-efficient human body communications based on IEEE 802.15.6 WBAN standard, ETRI J. 38 (2016), no. 6, 1074-1084.   DOI
34 J. Park and P. P. Mercier, 17.6 a sub-40㎼ 5Mb/s magnetic human body communication transceiver demonstrating transbody delivery of high- _delity audio to a wearable in-ear headphone, (Proc. of ISSCC, San Francisco, CA, USA), Feb. 2019, pp. 286-287.