DOI QR코드

DOI QR Code

A 0.9-V human body communication receiver using a dummy electrode and clock phase inversion scheme

  • Oh, Kwang-Il (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Sung-Eun (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Kang, Taewook (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Hyuk (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Lim, In-Gi (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Park, Mi-Jeong (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Lee, Jae-Jin (AI SoC Research Division, Electronics and Telecommunications Research Institute) ;
  • Park, Hyung-Il (AI SoC Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2022.03.18
  • Accepted : 2022.08.22
  • Published : 2022.10.10

Abstract

This paper presents a low-power and lightweight human body communication (HBC) receiver with an embedded dummy electrode for improved signal acquisition. The clock data recovery (CDR) circuit in the receiver operates with a low supply voltage and utilizes a clock phase inversion scheme. The receiver is equipped with a main electrode and dummy electrode that strengthen the capacitive-coupled signal at the receiver frontend. The receiver CDR circuit exploits a clock inversion scheme to allow 0.9-V operation while achieving a shorter lock time than at 3.3-V operation. In experiments, a receiver chip fabricated using 130-nm complementary metal-oxide-semiconductor technology was demonstrated to successfully receive the transmitted signal when the transmitter and receiver are placed separately on each hand of the user while consuming only 4.98 mW at a 0.9-V supply voltage.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (no. 2020-0-01294, Development of IoT Based Edge Computing Ultra-low Power Artificial Intelligent Processor).

References

  1. M. S. Wegmueller, A. Kuhn, J. Froehlich, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, An attempt to model the human body as a communication channel, IEEE Trans. Biomed. Eng. 54 (2007), no. 10, 1851-1857. https://doi.org/10.1109/TBME.2007.893498
  2. M. Seyedi, B. Kibret, D. T. Lai, and M. Faulkner, A survey on intrabody communications for body area network applications, IEEE Trans. Biomed. Eng. 60 (2013), no. 8, 2067-2079. https://doi.org/10.1109/TBME.2013.2254714
  3. H. Wang, X. Tang, C. S. Choy, and G. E. Sobelman, Cascaded network body channel model for intrabody communication, IEEE J. Biomed. Health Informat. 20 (2016), no. 4, 1044-1052. https://doi.org/10.1109/JBHI.2015.2448111
  4. M. A. Callejon, D. Naranjo-Hernandez, J. Reina-Tosina, and L. M. Roa, A comprehensive study into intrabody communication measurements, IEEE Trans. Instrum. Meas. 62 (2013), no. 9, 2446-2455. https://doi.org/10.1109/TIM.2013.2258766
  5. S. Maity, D. Das, B. Chatterjee, and S. Sen, Characterization and classification of human body channel as a function of excitation and termination modalities, (Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., (Honolulu, HI, USA), Jul. 2018, pp. 3754-3757.
  6. S. Maity, M. He, M. Nath, D. Das, B. Chatterjee, and S. Sen, BioPhysical modeling, characterization and optimization of electroquasistatic human body communication, IEEE Trans. Biomed. Eng. 66 (2019), no. 6, 1791-1802. https://doi.org/10.1109/TBME.2018.2879462
  7. M. D. Pereira, G. A. Alvarez-Botero, and F. R. de Sousa, Characterization and modeling of the capacitive HBC channel, IEEE Trans. Instrum. Meas. 64 (2015), no. 10, 2626-2635. https://doi.org/10.1109/TIM.2015.2420391
  8. S. Maity, D. Das, X. Jiang, and S. Sen, Secure human-internet using dynamic human body communication, (Proc. of ISLPED, Taipei, Taiwan), July 2017, pp. 1-6.
  9. A. Astrin, IEEE Computer Society, IEEE standard for local and metropolitan area networks: Part 15.6 wireless body area networks, IEEE Std. 802.15.6 2012.
  10. P. Mayer, R. Strebel, and M. Magno, ZeroPowerTouch: Zeropower smart receiver for touch communication and sensing in wearable applications, (Proc. of DATE, Grenoble, France), Mar. 2019, pp. 944-947.
  11. E. Wen, D. Sievenpiper, and P. Mercier, Channel characterization of magnetic human body communication, IEEE Trans. Biomed. Eng. 69 (2022), no. 2, 569-579. https://doi.org/10.1109/TBME.2021.3101766
  12. A. Tanaka, G. Chen, S. Ye, and K. Niitsu, A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS, (IEEE International Conference on Electronics, Circuits, and Systemas, Dubai, Uniteda Srab Emirates), Nov. 2021, pp. 1-5.
  13. T. G. Zimmerman, J. R. Smith, J. A. Paradiso, D. Allport, and N. Gershenfeld, Applying electric field sensing to human-computer-interfaces,(Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,Denver, CO, USA), May 1995, pp. 280-287.
  14. N. Cho, L. Yan, J. Bae, and H. J. Yoo, A 60 kb/s-10 Mb/s adaptive frequency hopping transceiver for interference-resilient body channel communication, IEEE J. Solid-State Circuits 44 (2009), no. 3, 708-717. https://doi.org/10.1109/JSSC.2008.2012328
  15. C. Hyoung, S. W. Kang, S. O. Park, and Y. T. Kim, Transceiver for human body communication using frequency selective digital transmission, ETRI J. 34 (2012), no. 2, 216-225. https://doi.org/10.4218/etrij.12.0111.0178
  16. K. Oh, T. W. Kang, S. E. Kim, H. I. Park, I. G. Lim, and S. W. Kang, Low-noise inducing Rx for human body communication, Electron. Lett. 52 (2016), no. 21, 1740-1742. https://doi.org/10.1049/el.2016.2825
  17. T. -W. Kang, J. H. Hwang, S. E. Kim, K. I. Oh, H. I. Park, I. G. Lim, and S. W. Kang, Highly simplified and bandwidth-efficient human body communications based on IEEE 802.15.6 WBAN standard, ETRI J. 38 (2016), no. 6, 1074-1084. https://doi.org/10.4218/etrij.16.2716.0003
  18. J.-H. Hwang, T. W. Kang, Y. T. Kim, and S. O. Park, Measurement of transmission properties of HBC channel and its impulse response model, IEEE Trans. Instrum. Meas. 65 (2016), no. 1, 177-188. https://doi.org/10.1109/TIM.2015.2476236
  19. T. Kang, S. Kim, K. I. Oh, J. H. Hwang, J. Lee, H. Park, K. Byun, and W. Lee, Evaluation of human body characteristics for electric signal transmission based on measured body impulse response, IEEE Trans. Instrum. Meas. 69 (2020), no. 9, 6399-6411. https://doi.org/10.1109/TIM.2020.2970870
  20. T. Kang, K. I. Oh, J. H. Hwang, S. Kim, H. Park, and J. Lee, Measurement and analysis of electric signal transmission using human body as medium for WBAN applications, IEEE Trans. Instrum. Meas. 67 (2018), no. 3, 527-537. https://doi.org/10.1109/TIM.2017.2783059
  21. T. Kang, K. I. Oh, H. Park, and S. Kang, Review of capacitive coupling human body communications based on digital transmission, ICT Exp. 2 (2016), no. 4, 180-187. https://doi.org/10.1016/j.icte.2016.11.002
  22. T. Kang, J. H. Hwang, H. Kim, S. E. Kim, K. I. Oh, J. J. Lee, H. I. Park, S. E. Kim, W. Oh, and W. Lee, Measurement and evaluation of electric signal transmission through human body by channel modeling, system design, and implementation, IEEE Trans. Instrum. Meas. 70 (2021), 1-14.
  23. T. Lee, Y. H. Kim, J. Sim, J. S. Park, and L. S. Kim, A 5-Gb/s 2.67-mW/Gb/s digital clock and data recovery with hybrid dithering using a time-dithered delta-sigma modulator, IEEE Trans. Very Large Scale Integr. Syst. 24 (2016), no. 4, 1450-1459. https://doi.org/10.1109/TVLSI.2015.2449866
  24. J. Lee, K. S. Kundert, and B. Razavi, Analysis and modeling of bang-bang clock and data recovery circuits, IEEE J. Solid-State Circuits 39 (2004), no. 9, 1571-1580. https://doi.org/10.1109/JSSC.2004.831600
  25. V. Matko and R. Safaric, Major improvements of quartz crystal pulling sensitivity and linearity using series reactance, Sensors 9 (2009), no. 10, 8263-8270. https://doi.org/10.3390/s91008263
  26. J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits, 3rd ed., Prentice Hall Press, Hoboken, NJ, USA, 2008.
  27. F. M. Gardner, Phaselock techniques, 3rd ed., John Wiley & Sons, NY, USA, 2005.
  28. C. R. Hogge Jr., A self correcting clock recovery circuit, IEEE J. Lightwave Technol. 3 (1985), no. 6, 1312-1314. https://doi.org/10.1109/JLT.1985.1074356
  29. Tektronix, Differential probes P6248.P6247.P6246 datasheet, 2016. Available from: https://www.tek.com/datasheet/differential-probes-2 [last accessed March 2022].
  30. S.-J. Song, N. Cho, S. Kim, J. Yoo, S. Choi, and H. J. Yoo, A 0.9 V 2.6 mW body-coupled scalable PHY transceiver for body sensor applications, (IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, CA, USA), Feb. 2007, pp. 366-367.
  31. H. Cho, H. Kim, M. Kim, J. Jang, Y. Lee, K. J. Lee, J. Bae, and H. J. Yoo, A 79 pJ/b 80 Mb/s full-duplex transceiver and a 42.5 μW 100 kb/s super-regenerative transceiver for Body Channel communication, IEEE J. Solid-State Circuits 51 (2016), no. 1, 310-317. https://doi.org/10.1109/JSSC.2015.2498761
  32. J. Park and P. P. Mercier, 17.6 a sub-40㎼ 5Mb/s magnetic human body communication transceiver demonstrating transbody delivery of high- _delity audio to a wearable in-ear headphone, (Proc. of ISSCC, San Francisco, CA, USA), Feb. 2019, pp. 286-287.
  33. Y. Jeon, C. Jung, S. I. Cheon, H. Cho, J. H. Suh, H. Jeon, S. T. Koh, and M. Je, A 100Mb/s galvanically-coupled body-channelcommunication transceiver with 4.75 pJ/b TX and 26.8 pJ/b RX for bionic arms, (Proc. of Symp. VLSI Circuits, Kyoto, Japan), June 2019, pp. C292-C293.
  34. J.-H. Lee, J. Ko, K. Kim, M. Choi, J. Y. Sim, H. J. Park, and B. Kim, A Body Channel communication technique utilizing decision feedback equalization, IEEE Access 8 (2020), 198468-198481. https://doi.org/10.1109/ACCESS.2020.3034999