Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (no. 2020-0-01294, Development of IoT Based Edge Computing Ultra-low Power Artificial Intelligent Processor).
References
- M. S. Wegmueller, A. Kuhn, J. Froehlich, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, An attempt to model the human body as a communication channel, IEEE Trans. Biomed. Eng. 54 (2007), no. 10, 1851-1857. https://doi.org/10.1109/TBME.2007.893498
- M. Seyedi, B. Kibret, D. T. Lai, and M. Faulkner, A survey on intrabody communications for body area network applications, IEEE Trans. Biomed. Eng. 60 (2013), no. 8, 2067-2079. https://doi.org/10.1109/TBME.2013.2254714
- H. Wang, X. Tang, C. S. Choy, and G. E. Sobelman, Cascaded network body channel model for intrabody communication, IEEE J. Biomed. Health Informat. 20 (2016), no. 4, 1044-1052. https://doi.org/10.1109/JBHI.2015.2448111
- M. A. Callejon, D. Naranjo-Hernandez, J. Reina-Tosina, and L. M. Roa, A comprehensive study into intrabody communication measurements, IEEE Trans. Instrum. Meas. 62 (2013), no. 9, 2446-2455. https://doi.org/10.1109/TIM.2013.2258766
- S. Maity, D. Das, B. Chatterjee, and S. Sen, Characterization and classification of human body channel as a function of excitation and termination modalities, (Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., (Honolulu, HI, USA), Jul. 2018, pp. 3754-3757.
- S. Maity, M. He, M. Nath, D. Das, B. Chatterjee, and S. Sen, BioPhysical modeling, characterization and optimization of electroquasistatic human body communication, IEEE Trans. Biomed. Eng. 66 (2019), no. 6, 1791-1802. https://doi.org/10.1109/TBME.2018.2879462
- M. D. Pereira, G. A. Alvarez-Botero, and F. R. de Sousa, Characterization and modeling of the capacitive HBC channel, IEEE Trans. Instrum. Meas. 64 (2015), no. 10, 2626-2635. https://doi.org/10.1109/TIM.2015.2420391
- S. Maity, D. Das, X. Jiang, and S. Sen, Secure human-internet using dynamic human body communication, (Proc. of ISLPED, Taipei, Taiwan), July 2017, pp. 1-6.
- A. Astrin, IEEE Computer Society, IEEE standard for local and metropolitan area networks: Part 15.6 wireless body area networks, IEEE Std. 802.15.6 2012.
- P. Mayer, R. Strebel, and M. Magno, ZeroPowerTouch: Zeropower smart receiver for touch communication and sensing in wearable applications, (Proc. of DATE, Grenoble, France), Mar. 2019, pp. 944-947.
- E. Wen, D. Sievenpiper, and P. Mercier, Channel characterization of magnetic human body communication, IEEE Trans. Biomed. Eng. 69 (2022), no. 2, 569-579. https://doi.org/10.1109/TBME.2021.3101766
- A. Tanaka, G. Chen, S. Ye, and K. Niitsu, A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS, (IEEE International Conference on Electronics, Circuits, and Systemas, Dubai, Uniteda Srab Emirates), Nov. 2021, pp. 1-5.
- T. G. Zimmerman, J. R. Smith, J. A. Paradiso, D. Allport, and N. Gershenfeld, Applying electric field sensing to human-computer-interfaces,(Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,Denver, CO, USA), May 1995, pp. 280-287.
- N. Cho, L. Yan, J. Bae, and H. J. Yoo, A 60 kb/s-10 Mb/s adaptive frequency hopping transceiver for interference-resilient body channel communication, IEEE J. Solid-State Circuits 44 (2009), no. 3, 708-717. https://doi.org/10.1109/JSSC.2008.2012328
- C. Hyoung, S. W. Kang, S. O. Park, and Y. T. Kim, Transceiver for human body communication using frequency selective digital transmission, ETRI J. 34 (2012), no. 2, 216-225. https://doi.org/10.4218/etrij.12.0111.0178
- K. Oh, T. W. Kang, S. E. Kim, H. I. Park, I. G. Lim, and S. W. Kang, Low-noise inducing Rx for human body communication, Electron. Lett. 52 (2016), no. 21, 1740-1742. https://doi.org/10.1049/el.2016.2825
- T. -W. Kang, J. H. Hwang, S. E. Kim, K. I. Oh, H. I. Park, I. G. Lim, and S. W. Kang, Highly simplified and bandwidth-efficient human body communications based on IEEE 802.15.6 WBAN standard, ETRI J. 38 (2016), no. 6, 1074-1084. https://doi.org/10.4218/etrij.16.2716.0003
- J.-H. Hwang, T. W. Kang, Y. T. Kim, and S. O. Park, Measurement of transmission properties of HBC channel and its impulse response model, IEEE Trans. Instrum. Meas. 65 (2016), no. 1, 177-188. https://doi.org/10.1109/TIM.2015.2476236
- T. Kang, S. Kim, K. I. Oh, J. H. Hwang, J. Lee, H. Park, K. Byun, and W. Lee, Evaluation of human body characteristics for electric signal transmission based on measured body impulse response, IEEE Trans. Instrum. Meas. 69 (2020), no. 9, 6399-6411. https://doi.org/10.1109/TIM.2020.2970870
- T. Kang, K. I. Oh, J. H. Hwang, S. Kim, H. Park, and J. Lee, Measurement and analysis of electric signal transmission using human body as medium for WBAN applications, IEEE Trans. Instrum. Meas. 67 (2018), no. 3, 527-537. https://doi.org/10.1109/TIM.2017.2783059
- T. Kang, K. I. Oh, H. Park, and S. Kang, Review of capacitive coupling human body communications based on digital transmission, ICT Exp. 2 (2016), no. 4, 180-187. https://doi.org/10.1016/j.icte.2016.11.002
- T. Kang, J. H. Hwang, H. Kim, S. E. Kim, K. I. Oh, J. J. Lee, H. I. Park, S. E. Kim, W. Oh, and W. Lee, Measurement and evaluation of electric signal transmission through human body by channel modeling, system design, and implementation, IEEE Trans. Instrum. Meas. 70 (2021), 1-14.
- T. Lee, Y. H. Kim, J. Sim, J. S. Park, and L. S. Kim, A 5-Gb/s 2.67-mW/Gb/s digital clock and data recovery with hybrid dithering using a time-dithered delta-sigma modulator, IEEE Trans. Very Large Scale Integr. Syst. 24 (2016), no. 4, 1450-1459. https://doi.org/10.1109/TVLSI.2015.2449866
- J. Lee, K. S. Kundert, and B. Razavi, Analysis and modeling of bang-bang clock and data recovery circuits, IEEE J. Solid-State Circuits 39 (2004), no. 9, 1571-1580. https://doi.org/10.1109/JSSC.2004.831600
- V. Matko and R. Safaric, Major improvements of quartz crystal pulling sensitivity and linearity using series reactance, Sensors 9 (2009), no. 10, 8263-8270. https://doi.org/10.3390/s91008263
- J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits, 3rd ed., Prentice Hall Press, Hoboken, NJ, USA, 2008.
- F. M. Gardner, Phaselock techniques, 3rd ed., John Wiley & Sons, NY, USA, 2005.
- C. R. Hogge Jr., A self correcting clock recovery circuit, IEEE J. Lightwave Technol. 3 (1985), no. 6, 1312-1314. https://doi.org/10.1109/JLT.1985.1074356
- Tektronix, Differential probes P6248.P6247.P6246 datasheet, 2016. Available from: https://www.tek.com/datasheet/differential-probes-2 [last accessed March 2022].
- S.-J. Song, N. Cho, S. Kim, J. Yoo, S. Choi, and H. J. Yoo, A 0.9 V 2.6 mW body-coupled scalable PHY transceiver for body sensor applications, (IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, CA, USA), Feb. 2007, pp. 366-367.
- H. Cho, H. Kim, M. Kim, J. Jang, Y. Lee, K. J. Lee, J. Bae, and H. J. Yoo, A 79 pJ/b 80 Mb/s full-duplex transceiver and a 42.5 μW 100 kb/s super-regenerative transceiver for Body Channel communication, IEEE J. Solid-State Circuits 51 (2016), no. 1, 310-317. https://doi.org/10.1109/JSSC.2015.2498761
- J. Park and P. P. Mercier, 17.6 a sub-40㎼ 5Mb/s magnetic human body communication transceiver demonstrating transbody delivery of high- _delity audio to a wearable in-ear headphone, (Proc. of ISSCC, San Francisco, CA, USA), Feb. 2019, pp. 286-287.
- Y. Jeon, C. Jung, S. I. Cheon, H. Cho, J. H. Suh, H. Jeon, S. T. Koh, and M. Je, A 100Mb/s galvanically-coupled body-channelcommunication transceiver with 4.75 pJ/b TX and 26.8 pJ/b RX for bionic arms, (Proc. of Symp. VLSI Circuits, Kyoto, Japan), June 2019, pp. C292-C293.
- J.-H. Lee, J. Ko, K. Kim, M. Choi, J. Y. Sim, H. J. Park, and B. Kim, A Body Channel communication technique utilizing decision feedback equalization, IEEE Access 8 (2020), 198468-198481. https://doi.org/10.1109/ACCESS.2020.3034999