• Title/Summary/Keyword: Candidate Key

Search Result 393, Processing Time 0.022 seconds

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Raoultella ornithinolytica BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway

  • Yuan, Haibo;Liu, Yanfeng;Lv, Xueqin;Li, Jianghua;Du, Guocheng;Shi, Zhongping;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1999-2008
    • /
    • 2018
  • The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.

Genome-wide association studies on collagen contents trait for meat quality in Hanwoo

  • KyeongHye Won;Dohyun Kim;Inho Hwang;Hak-Kyo Lee;Jae-Don Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.311-323
    • /
    • 2023
  • Beef consumers valued meat quality traits such as texture, tenderness, juiciness, flavor, and meat color that determining consumers' purchasing decision. Most research on meat quality has focused on marbling, a key characteristic related to meat eating quality. However, other important traits such as meat texture, tenderness, and color have not much studied in cattle. Among these traits, meat tenderness and texture of cattle are among the most important factors affecting quality evaluation of consumers. Collagen is the main component of connective tissues.It greatly affects meat tenderness. The objective of this study was to determine significant variants and candidate genes associated with collagen contents trait (total collagen) through genome-wide association studies (GWAS). Phenotypic and genomic data from 135 Hanwoo were used. The BLUPF90 family program and GRAMMAR method for GWAS were applied in this study. A total of 73 potential single nucleotide polymorphisms (SNPs) showed significant associations with collagen content. They were located in or near 108 candidate genes. TMEM135 and ME3 genes were identified to have the most significant SNPs associated with collagen contents trait. Data indicated that these genes were related to collagen. Biological processes and pathways for the prediction of biological functions of candidate genes were confirmed. We found that candidate genes were involved in positive regulation of CREB transcription factor activity and actin cytoskeleton related to tenderness and texture of beef. Three genes (CRTC3, MYO1C and MYLK4) belonging to these biological functions were related to tenderness. These results provide a basis for improving genomic characteristics of Hanwoo for the production of tender beef. Furthermore, they could be used they could be used as an index to select desired traits for consumers.

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.

A City-Level Boundary Nodes Identification Algorithm Based on Bidirectional Approaching

  • Tao, Zhiyuan;Liu, Fenlin;Liu, Yan;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2764-2782
    • /
    • 2021
  • Existing city-level boundary nodes identification methods need to locate all IP addresses on the path to differentiate which IP is the boundary node. However, these methods are susceptible to time-delay, the accuracy of location information and other factors, and the resource consumption of locating all IPes is tremendous. To improve the recognition rate and reduce the locating cost, this paper proposes an algorithm for city-level boundary node identification based on bidirectional approaching. Different from the existing methods based on time-delay information and location results, the proposed algorithm uses topological analysis to construct a set of candidate boundary nodes and then identifies the boundary nodes. The proposed algorithm can identify the boundary of the target city network without high-precision location information and dramatically reduces resource consumption compared with the traditional algorithm. Meanwhile, it can label some errors in the existing IP address database. Based on 45,182,326 measurement results from Zhengzhou, Chengdu and Hangzhou in China and New York, Los Angeles and Dallas in the United States, the experimental results show that: The algorithm can accurately identify the city boundary nodes using only 20.33% location resources, and more than 80.29% of the boundary nodes can be mined with a precision of more than 70.73%.

Novel Alkali-Stable, Cellulase-Free Xylanase from Deep-Sea Kocuria sp. Mn22

  • Li, Chanjuan;Hong, Yuzhi;Shao, Zongze;Lin, Ling;Huang, Xiaoluo;Liu, Pengfu;Wu, Gaobing;Meng, Xin;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.873-880
    • /
    • 2009
  • A novel xylanase gene, Kxyn, was cloned from Kocuria sp. Mn22, a bacteria isolated from the deep sea of the east Pacific. Kxyn consists of 1,170 bp and encodes a protein of 390 amino acids that shows the highest identity (63%) with a xylanase from Thermohifida fusca YX. The mature protein with a molecular mass of approximately 40 kDa was expressed in Escherichia coli BL21 (DE3). The recombinant Kxyn displayed its maximum activity at $55^{\circ}C$ and at pH 8.5. The $K_m,\;V_{max}$, and $k_{cat}$ values of Kxyn for birchwood xylan were 5.4 mg/ml, $272{\mu}mol/min{\cdot}mg$, and 185.1/s, respectively. Kxyn hydrolyzed birchwood xylan to produce xylobiose and xylotriose as the predominant products. The activity of Kxyn was not affected by $Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+$, ${\beta}$-mercaptoethanol, DTT, or SDS, but was strongly inhibited by $Hg^{2+},\;Cu^{2+},Zn^{2+}$, and $Pb^{2+}$. It was stable over a wide pH range, retaining more than 80% activity after overnight incubation at pH 7.5-12. Kxyn is a cellulase-free xylanase. Therefore, these properties make it a candidate for various industrial applications.

DdeI Polymorphism in Coding Region of Goat POU1F1 Gene and Its Association with Production Traits

  • Lan, X.Y.;Pan, C.Y.;Chen, H.;Lei, C.Z.;Hua, L.S.;Yang, X.B.;Qiu, G.Y.;Zhang, R.F.;Lun, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1342-1348
    • /
    • 2007
  • POU1F1 is a positive regulator for GH, PRL and TSH${\beta}$ and its mutations associate with production traits in ruminant animals. We described a DdeI PCR-RFLP method for detecting a silent allele in the goat POU1F1 gene: TCT (241Ser)>TCG (241Ser). Frequencies of $D_1$ allele varied from 0.600 to 1.000 in Chinese 801 goats. Significant associations of DdeI polymorphism with production traits were found in milk yield (*p<0.05), litter size (*p<0.05) and one-year-old weight (*p<0.05) between different genotypes. Individuals with genotype $D_1D_1$ had a superior performances when compared to those with genotype $D_1D_2$ (*p<0.05). Hence, the POU1F1 gene was suggested to the potential candidate gene for superior milk performance, reproduction trait and weight trait. Genotype $D_1D_1$, characterized by a DdeI PCR-RFLP detection, was recommended to geneticists and breeders as a molecular marker for better performance in the goat industry.

Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

  • Yang, Zhi-Qin;Qing, Ying;Zhu, Qing;Zhao, Xiao-Ling;Wang, Yan;Li, Di-Yan;Liu, Yi-Ping;Yin, Hua-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range). The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T) were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TTCT (p<0.05). Moreover, the interaction between housing system and combined genotypes has no significant effect on the traits of muscle fiber (p>0.05). Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease

  • Liu, Yang;Li, Yifeng;Yu, Xinjie;Yu, Leilei;Tian, Fengwei;Zhao, Jianxin;Zhang, Hao;Zhai, Qixiao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.92-103
    • /
    • 2021
  • Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.

THE EFFECTS OF ZINC DURING VISUAL ADAPTATION OF VERTEBRATE EYE

  • Kim, Hyun-Jung
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.63-67
    • /
    • 1995
  • Zinc plays a key role in genetic expression, cell division, and growth and is essential for the function of more than 200 enzymes; effects of zinc deficiency induce many syndromes, including abnormal visual adaptation. The pigment epithelium (EP) contains high concentrations of zinc in humans and in animals and it participates in threshold elevation, visual sensitivity increment, and acceleration of rhodopsin regeration during visual adaptation. The origin of c-wave of electroretinogram(ERG) is not only pigment epithelium as shown in present research, but also other cell layers, perhaps the photoreceptors. We propose zinc as a candidate for an internal messenger which participates in signal amplification.

  • PDF