DOI QR코드

DOI QR Code

DdeI Polymorphism in Coding Region of Goat POU1F1 Gene and Its Association with Production Traits

  • Lan, X.Y. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Pan, C.Y. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Chen, H. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Lei, C.Z. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Hua, L.S. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Yang, X.B. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Qiu, G.Y. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Zhang, R.F. (College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture) ;
  • Lun, Y.Z. (Medical College, Dalian University)
  • Received : 2006.08.01
  • Accepted : 2007.04.07
  • Published : 2007.09.01

Abstract

POU1F1 is a positive regulator for GH, PRL and TSH${\beta}$ and its mutations associate with production traits in ruminant animals. We described a DdeI PCR-RFLP method for detecting a silent allele in the goat POU1F1 gene: TCT (241Ser)>TCG (241Ser). Frequencies of $D_1$ allele varied from 0.600 to 1.000 in Chinese 801 goats. Significant associations of DdeI polymorphism with production traits were found in milk yield (*p<0.05), litter size (*p<0.05) and one-year-old weight (*p<0.05) between different genotypes. Individuals with genotype $D_1D_1$ had a superior performances when compared to those with genotype $D_1D_2$ (*p<0.05). Hence, the POU1F1 gene was suggested to the potential candidate gene for superior milk performance, reproduction trait and weight trait. Genotype $D_1D_1$, characterized by a DdeI PCR-RFLP detection, was recommended to geneticists and breeders as a molecular marker for better performance in the goat industry.

Keywords

References

  1. Archetti, M. 2004. Codon usage bias and mutation constraints reduce the level of error minimization of the genetic code. J. Mol. Evol. 59(2):258-266 https://doi.org/10.1007/s00239-004-2620-0
  2. Bastos, E., I. Santos, I. H. Parentier, J. L. Castrillo, A. Cravador, M. Guedes-Pinto and R. Renaville. 2006. Ovis aries POU1F1 gene: cloning, characterization and polymorphism analysis. Genet. 126:303-314 https://doi.org/10.1007/s10709-005-0034-6
  3. Boyazoglu, J., I. Hatziminaoglou and P. Morand-Fehr. 2005. The role of the goat in society: Past, present and perspectives for the future. Small Rumin. Res. 60:13-23 https://doi.org/10.1016/j.smallrumres.2005.06.003
  4. Coghlan, A. and K. H. Wolfe. 2000. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast, 16(12):1131-1145 https://doi.org/10.1002/1097-0061(20000915)16:12<1131::AID-YEA609>3.0.CO;2-F
  5. Dubeuf, J. P., P. Morand-Fehr, Rubino and R. Situation. 2004. changes and future of goat industry around the world. Small Rumin. Res. 51:165-173 https://doi.org/10.1016/j.smallrumres.2003.08.007
  6. Esley, M., J. Heizer, Douglas W. Raiford, Michael L. Raymer, Travis E. Doom, Robert V. Miller and Dan E. Krane. 2006. Amino Acid Cost and Codon-Usage Biases in 6 Prokaryotic Genomes: A Whole-Genome Analysis. Mole. Biol. Evol. 2399:1670-1680
  7. Eyre-Walker, A. 1996. Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? Mole. Biol. Evol. 13:864-872 https://doi.org/10.1093/oxfordjournals.molbev.a025646
  8. Jacobson, E. M., P. Li, A. Leon-del-Pio, M. G. Rosenfeld and A. K. Aggarwa. 1997. Structure of Pit-1 POU domain bound to DNA as dimer: unexpected arrangement and flexibility. Genes. Dev. 11:198-212 https://doi.org/10.1101/gad.11.2.198
  9. Kim, J. Y., D. H. Yoon, B. L. Park, L. H. Kim, K. J. Na, J. G. Choi, C. Y. Cho, H. K. Lee, E. R. Chung, B. C. Sang, I. J. Cheong, S. J. Oh and H. D. Shin. 2005. Identification of Novel SNPs in Bovine Insulin-like Growth Factor Binding Protein-3 (IGFBP3) Gene. Asian-Aust. J. Anim. Sci. 18(1):3-7 https://doi.org/10.5713/ajas.2005.3
  10. Kurland, C. G. 1991. Codon bias and gene expression FEBS Lett. 285(2):65-69
  11. Lavner, Y. and D. Kotlar. 2005. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene. 345:127-138 https://doi.org/10.1016/j.gene.2004.11.035
  12. Li, J. T., A. H. Wang, P. Chen, H. B. Li, C. S. Zhang and L. X. Du. 2006. Relationship between the Polymorphisms of 5'Regulation Region of Prolactin Gene and Milk Traits in Chinese Holstein Dairy Cows. Asian-Aust. J. Anim. Sci. 19(4):459-462 https://doi.org/10.5713/ajas.2006.459
  13. Liu, H., X. H. Wang, Y. F. Liu, X. B. Zhao, N. Li and C. X. Wu. 2006. Codon frequency influencing laying performance: Evidence from 3 SNP in chicken prolactin gene, 10(1):196-198 (Abstr.)
  14. Li, S., III E. B. Crenshaw, E. J. Rawson, D. M. Simmons, L. W. Swanson and M. G. Rosenfeld. 1990. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature, 347:528-533 https://doi.org/10.1038/347528a0
  15. Pfaffle, R. W., G. E. DiMattia, J. Parks, M. Brown, J. M. Wit, M. Jansen, N. H. Van der, J. L. Van den Brande, M. G. Rosenfel, H. A. Ingraham. 1992. Mutation of the POU-specific domain of Pit-1 and hypopituitarismwithout pituitary hypoplasia. Sci. 257:1118-1121 https://doi.org/10.1126/science.257.5073.1118
  16. Renaville, R., N. Gengler, E. Vrench, A. Prandi, S. Massart, C. Corradini, C. Bertozzi, F. Mortiaux, A. Burny and D. Portetelle. 1997a. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls. J. Dairy Sci. 80:3431-3438 https://doi.org/10.3168/jds.S0022-0302(97)76319-7
  17. Renaville, R., N. Gengler, I. Parmentier, F. Mortiaux, S. Massart, C. Bertozzi, A. Burny and D. Portetelle. 1997b. Pit-1 gene HinfI RFLP and growth traits in double-muscled Belgian Blue Cattle. J. Anim. Sci. 75 (Suppl. 1):146 (Abstr.)
  18. Reynau, R., A. Saveanu, A. Barlier, A. Enjalbert and T. Brue. 2004. Pituitary hormone deficiencies due to transcription factor gene alterations. Growth Hormone & IGF Research, 14(6):442-448 https://doi.org/10.1016/j.ghir.2004.07.001
  19. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, vol. 3, third ed. Cold Spring Harbor Laboratory Press, New York
  20. Stancekov, K., D. Vasicek, D. Peskovicov, J. Bull and A. Kubek. 1999. Effect of genetic variability of the porcine pituitaryspecific transcription factor (PIT-1) on carcass traits in pigs. Anim. Genet. 30:313-315 https://doi.org/10.1046/j.1365-2052.1999.00484.x
  21. Sun, H. S., L. L. Andersona, T. P. Yu, K. S. Kim, J. Klind and C. K. Tuggle. 2002. Neonatal Meishan pigs show POU1F1 genotype effects on plasma GH and PRL concentration. Anim. Rep. Sci. 69:223-237 https://doi.org/10.1016/S0378-4320(01)00177-4
  22. Woollard, J., C. K. Tuggle and. F. A. Ponce de Leon. 2000. Rapid communication: Localization of POU1F1 to bovine, ovine, and caprine 1q21-22. J. Anim. Sci. 78:242-243 https://doi.org/10.2527/2000.781242x
  23. Yu, T. P., C. K. Tuggle, C. B. Schmitz and M. F. Rothschild. 1995. Association of PIT1 polymorphisms with growth and carcass traits in pigs. J. Anim. Sci. 73:1282-1288 https://doi.org/10.2527/1995.7351282x
  24. Zhao, Q., M. E. Davis and H. C. Hines. 2004. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. J. Anim. Sci. 82(8):2229-2233 https://doi.org/10.2527/2004.8282229x
  25. Zhou, G. L., Q. Zhu, H. G. Jin and S. L. Guo. 2006. Genetic Variation of Growth Hormone Gene and Its Relationship with Milk Production Traits in China Holstein Cows. Asian-Aust. J. Anim. Sci. 19(3):315-318 https://doi.org/10.5713/ajas.2006.315
  26. Zhou, L., Y. Y. Yang, Z. H. Li, L. J. Kong, G. D. Xing, H. S. Di and G. L. Wang. 2006. Detection and Characterization of PCRSSCP Markers of the Bovine Lactoferrin Gene for Clinical Mastitis. Asian-Aust. J. Anim. Sci. 19(10):1399-1403 https://doi.org/10.5713/ajas.2006.1399

Cited by

  1. A PstI polymorphism at 3′UTR of goat POU1F1 gene and its effect on cashmere production vol.36, pp.6, 2009, https://doi.org/10.1007/s11033-008-9322-4
  2. A novel missense (A79V) mutation of goat PROP1 gene and its association with production traits vol.36, pp.8, 2009, https://doi.org/10.1007/s11033-008-9418-x
  3. Novel SNP of the goatprolactin gene (PRL) associated with cashmere traits vol.50, pp.1, 2009, https://doi.org/10.1007/BF03195652
  4. A coding SNP of LHX4 gene is associated with body weight and body length in bovine vol.37, pp.1, 2010, https://doi.org/10.1007/s11033-009-9486-6
  5. Novel 12-bp deletion in the coding region of the bovineNPM1 gene affects growth traits vol.51, pp.2, 2010, https://doi.org/10.1007/BF03195728
  6. A large indel mutation of the bovine ADD1/SREBP1c gene and its effects on growth traits in some native cattle breeds from China vol.38, pp.3, 2011, https://doi.org/10.1007/s11033-010-0327-4
  7. Polymorphisms of caprine POU1F1 gene and their association with litter size in Jining Grey goats vol.39, pp.4, 2012, https://doi.org/10.1007/s11033-011-1184-5
  8. Analysis of polymorphism within POU1F1 gene in relation to milk production traits in dairy Sarda sheep breed vol.39, pp.6, 2012, https://doi.org/10.1007/s11033-012-1525-z
  9. Identification of novel SNPs in the Sarda breed goats POU1F1 gene and their association with milk productive performance vol.40, pp.4, 2013, https://doi.org/10.1007/s11033-012-2298-0
  10. Association of pituitary specific transcription factor-1 (POU1F1) gene polymorphism with growth and biometric traits and blood metabolites in Iranian Zel and Lori-Bakhtiari sheep vol.41, pp.9, 2014, https://doi.org/10.1007/s11033-014-3451-8
  11. Evaluation of insulin-like growth factor-I gene polymorphism in Egyptian small ruminant breeds vol.15, pp.48, 2016, https://doi.org/10.5897/AJB2016.15727
  12. Study on the polymorphism of POU1F1 gene in sheep vol.45, pp.10, 2016, https://doi.org/10.1590/S1806-92902016001000004
  13. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats vol.101, pp.3, 2018, https://doi.org/10.3168/jds.2017-12919
  14. A New Single Nucleotide Polymorphism in the IGF-I Gene and Its Association with Growth Traits in the Nanjiang Huang Goat vol.21, pp.8, 2007, https://doi.org/10.5713/ajas.2008.70673
  15. Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle vol.54, pp.6, 2007, https://doi.org/10.1139/g11-016
  16. Molecular characterization and haplotype combination of PrRP gene polymorphism and its association with production traits in Chinese native goats vol.105, pp.1, 2007, https://doi.org/10.1016/j.smallrumres.2012.01.004
  17. Associations of POU1F1 gene polymorphisms and protein structure changes with growth traits and blood metabolites in two Iranian sheep breeds vol.93, pp.3, 2007, https://doi.org/10.1007/s12041-014-0438-0
  18. Two novel SNPs in the coding region of bovine VDR gene and their associations with growth traits vol.93, pp.suppl2, 2007, https://doi.org/10.1007/s12041-013-0244-0
  19. Associations of six SNPs of POU1F1-PROP1-PITX1-SIX3 pathway genes with growth traits in two Chinese indigenous goat breeds vol.17, pp.2, 2007, https://doi.org/10.1515/aoas-2016-0066
  20. Associations between genetic variants of the POU1F1 gene and production traits in Saanen goats vol.62, pp.1, 2019, https://doi.org/10.5194/aab-62-249-2019
  21. Relationship between SNPs of POU1F1 Gene and Litter Size and Growth Traits in Shaanbei White Cashmere Goats vol.9, pp.3, 2007, https://doi.org/10.3390/ani9030114