Browse > Article

Novel Alkali-Stable, Cellulase-Free Xylanase from Deep-Sea Kocuria sp. Mn22  

Li, Chanjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Hong, Yuzhi (College of Plant Science and Technology, Huazhong Agricultural University)
Shao, Zongze (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State of Oceanic Administration)
Lin, Ling (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Huang, Xiaoluo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Liu, Pengfu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Wu, Gaobing (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Meng, Xin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Liu, Ziduo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 873-880 More about this Journal
Abstract
A novel xylanase gene, Kxyn, was cloned from Kocuria sp. Mn22, a bacteria isolated from the deep sea of the east Pacific. Kxyn consists of 1,170 bp and encodes a protein of 390 amino acids that shows the highest identity (63%) with a xylanase from Thermohifida fusca YX. The mature protein with a molecular mass of approximately 40 kDa was expressed in Escherichia coli BL21 (DE3). The recombinant Kxyn displayed its maximum activity at $55^{\circ}C$ and at pH 8.5. The $K_m,\;V_{max}$, and $k_{cat}$ values of Kxyn for birchwood xylan were 5.4 mg/ml, $272{\mu}mol/min{\cdot}mg$, and 185.1/s, respectively. Kxyn hydrolyzed birchwood xylan to produce xylobiose and xylotriose as the predominant products. The activity of Kxyn was not affected by $Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+$, ${\beta}$-mercaptoethanol, DTT, or SDS, but was strongly inhibited by $Hg^{2+},\;Cu^{2+},Zn^{2+}$, and $Pb^{2+}$. It was stable over a wide pH range, retaining more than 80% activity after overnight incubation at pH 7.5-12. Kxyn is a cellulase-free xylanase. Therefore, these properties make it a candidate for various industrial applications.
Keywords
Kocuria sp.; alkaline stability; cellulase-free xylanase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Xie, H., H. J. Gilbert, S. J. Charnock, G. J. Davies, M. P. Williamson, P. J. Simpson, et al. 2001. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: The role of conserved amino acids in ligand binding. Biochemistry 40: 9167-9176   DOI   ScienceOn
2 Zhao, J., X. Li, and Y. Qu. 2006. Application of enzymes in producing bleached pulp from wheat straw. Bioresour. Technol. 97: 1470-1476   DOI   ScienceOn
3 Cazemier, A. E., J. C. Verdoes, A. J. van Ooyen, and H. J. Op den Camp. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl. Environ. Microbiol. 65: 4099-4107   PUBMED   ScienceOn
4 Hou, Y. H., T. H. Wang, H. Long, and H. Y. Zhu. 2006. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from yellow sea. Acta Biochim. Biophys. Sin. (Shanghai) 38: 142-149   DOI   ScienceOn
5 Li, N., P. Yang, Y. Wang, H. Luo, K. Meng, N. Wu, Y. Fan, and B. Yao. 2008. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. K11. J. Microbiol. Biotechnol. 18: 410-416   PUBMED
6 Maalej, I., I. Belhaj, N. F. Masmoudi, and H. Belghith. 2008. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. [In Press.]
7 Ninawe, S., M. Kapoor, and R. C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258   DOI   ScienceOn
8 Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591   DOI   ScienceOn
9 Umemoto, H., Ihsanawati, M. Inami, R. Yatsunami, T. Fukui, T. Kumasaka, N. Tanaka, and S. Nakamura. 2007. Contribution of salt bridges to alkaliphily of Bacillus alkaline xylanase. Nucleic Acids Symp. Ser. (Oxf) 51: 461-462   DOI   ScienceOn
10 Wu, S., B. Liu, and X. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. Mt-1 in east Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216   DOI   ScienceOn
11 Decelle, B., A. Tsang, and R. K. Storms. 2004. Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1, 4-beta-xylanases. Curr. Genet. 46: 166- 175   PUBMED   ScienceOn
12 Gupta, N., V. S. Reddy, S. Maiti, and A. Ghosh. 2000. Cloning, expression, and sequence analysis of the gene encoding the alkalistable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. strain NG-27. Appl. Environ. Microbiol. 66: 2631- 2635   DOI   ScienceOn
13 Lee, C. C., M. Smith, R. E. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116   DOI   ScienceOn
14 Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74   DOI
15 Krishna, P., A. Arora, and M. S. Reddy. 2008. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J. Microbiol. Biotechnol. 24: 3079-3085   DOI   ScienceOn
16 Manikandan, K., A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy, and S. Ramakumar. 2006. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15: 1951-1960   DOI   ScienceOn
17 Jun, H., Y. Bing, K. Zhang, X. Ding, and C. Daiwen. 2008. Expression of a Trichoderma reesei beta-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein. Expr. Purif. [In Press.]
18 Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase a: Identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57: 273-277   DOI   ScienceOn
19 Kleine, J. and W. Liebl. 2006. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles 10: 373-381   DOI   ScienceOn
20 Li, N., K. Meng, Y. Wang, P. Shi, H. Luo, Y. Bai, P. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240   DOI   ScienceOn
21 Lo Leggio, L., S. Kalogiannis, M. K. Bhat, and R. W. Pickersgill. 1999. High resolution structure and sequence of T. aurantiacus xylanase I: Implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta) alpha-barrel architecture. Proteins 36: 295-306   DOI   ScienceOn
22 Hu, Y., G. Zhang, A. Li, J. Chen, and L. Ma. 2008. Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl. Microbiol. Biotechnol. 80: 823-830   DOI   ScienceOn
23 Ratanachomsri, U., R. Sriprang, W. Sornlek, B. Buaban, V. Champreda, S. Tanapongpipat, and L. Eurwilaichitr. 2006. Thermostable xylanase from Marasmius sp.: Purification and characterization. J. Biochem. Mol. Biol. 39: 105-110   DOI   PUBMED
24 Manimaran, A., K. S. Kumar, K. Permaul, and S. Singh. 2009. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl. Microbiol. Biotechnol. 81: 887-893   DOI   ScienceOn
25 Perez-Avalos, O., L. M. Sanchez-Herrera, L. M. Salgado, and T. Ponce-Noyola. 2008. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol. 57: 39-44   DOI   ScienceOn
26 Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59: 2311-2316
27 Teplitsky, A., A. Mechaly, V. Stojanoff, G. Sainz, G. Golan, H. Feinberg, et al. 2004. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl mad phasing. Acta Crystallogr. D Biol. Crystallogr. 60: 836-848   DOI   ScienceOn
28 Winterhalter, C. and W. Liebl. 1995. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 61: 1810-1815   PUBMED   ScienceOn
29 Ali, M. K., F. B. Rudolph, and G. N. Bennett. 2004. Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J. Ind. Microbiol. Biotechnol. 31: 229-234
30 Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23   DOI   ScienceOn
31 Kimura, T., H. Suzuki, H. Furuhashi, T. Aburatani, K. Morimoto, S. Karita, K. Sakka, and K. Ohmiya. 2000. Molecular cloning, overexpression, and purification of a major xylanase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 64: 2734- 2738   DOI   ScienceOn
32 Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra. 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441   DOI   ScienceOn